

Seminare und Weiterbildung

ISTQB® Certified Tester Foundation Level

Ausbildung nach ISTQB[®] Lehrplan 2018 v3.1 Version 1.0t

- 0. Allgemeines / Einführung »
- 1. Organisatorisches

Referenten:

- Arjan Brands arjan.brands@trendig.com
- Jenny Doering jenny.doering@trendig.com
- Werner Lieblang werner.lieblang@trendig.com
- Oliver Rupnow oliver.rupnow@trendig.com
- · ...

trendig technology services GmbH

Kleiststrasse 35

training@trendig.com

10787 Berlin

Telefon: 49 30 747628-0

Dieses Seminar bildet die Grundlage für die Prüfung zum "Certified Tester Foundation Level" nach ISTQB®*

Hauptziele der Ausbildung zum Certified Tester:

- o Kenntnisse im Softwaretesten stehen auf einer fundierten Grundlage
- Softwaretests können projektspezifisch konzipiert werden
- Prüftechniken und Prüfziele können adäquat ausgewählt werden
- Werkzeuge zur Testunterstützung können angemessen bewertet und genutzt werden

Das Begleitmaterial besteht aus:

- Einem kompletten Foliensatz
- o Einem Satz Übungsunterlagen mit Lösungen
- Literaturliste

Benutzte Icons

Definition aus dem Glossar

Nicht im Syllabus oder sonstige Ergänzungen

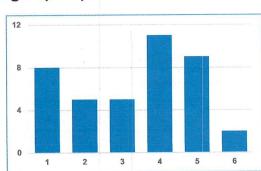
Übung

* ISTQB = International Software Testing Qualifications Board

Certified Tester Foundation Level

© trendig technology services GmbH

- 0. Allgemeines / Einführung »
- 4. Prüfung



Der Foliensatz wurde nach dem ISTQB®-Lehrplan für den "Certified Tester Foundation Level", Version 2018, erstellt

- Im Anschluss an die Veranstaltung kann die Prüfung zum Certified Tester Foundation Level abgelegt werden
- Die Abnahme erfolgt durch Vertreter eines unabhängigen Prüfungsinstituts
- Die Prüfung besteht aus einem 60-minütigen Multiple-Choice-Test
- Es sind **40** Fragen zu beantworten. **26 Fragen (65%)** müssen korrekt beantwortet werden, um zu bestehen.

Lernziele / kognitive Stufen des Wissens:

- K1: (remember) sich erinnern
- K2: (understand) verstehen
- K3: (apply) anwenden
- K4: (analyze) analysieren

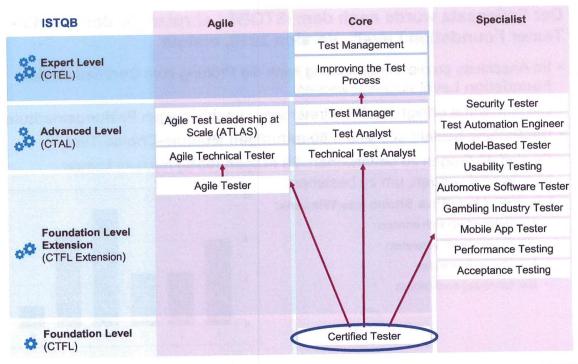

5. Internationale Organisationen

Qualifizierungsprogramm des ISTQB®

 1998 wurde in Großbritannien ein mehrstufiges Qualifizierungsprogramm definiert

- Die Grundlagen zum Softwaretest sind im Lehrplan für den Foundation Level beschrieben, Version 2018 v3.1
- Seit 2004 werden Zertifikate für den Advanced Level (Test Manager, Test Analyst, Technical Test Analyst) angeboten
- Informationen zum Expert Level stehen im Internet zur Verfügung

Zielgruppe


 Angesprochen sind Software-Tester, Entwickler und Projektleiter in Softwareund Industrieunternehmen, die ihre Kenntnisse auf eine fundierte Grundlage stellen wollen

Certified Tester Foundation Level

© trendig technology services GmbH

- 0. Allgemeines / Einführung »
- 5. Internationale Organisationen

German Testing Board (GTB)

- Es sind landesspezifische Testing Boards etabliert worden, die gemeinsam das International Software Testing Qualifications Board bilden
- In Deutschland: das German Testing Board GTB
- In Österreich: das Austrian Testing Board (ATB)
- Begriffsdefinitionen, die dem Glossar (informativ) des GTB entsprechen, sind in Fett-Kursiv-Schrift dargestellt http://www.german-testing-board.info/lehrplaene/istqbr-certified-tester-schema/glossar/
- Zu anderen Definitionen ist entweder die Quelle angeführt (z. B. ISO 29119) oder die Erklärungen stellen informelle Hintergrundinformationen dar

Certified Tester Foundation Level

© trendig technology services GmbH

10

- 0. Allgemeines / Einführung »
- 7. trendig technology services unsere Service-Bereiche

Auf diesen vier Feldern sind wir am stärksten

innovation

engineering

training

events

Design Thinking
Design Sprints
Gamification
User Centered Design

Requirements Engineering Software Development Testing Services

Test Automation

ISTQB®
Holistic (Agile) Testing
IREB®
X-United

Design Sprint Master

Agile Testing Days
Agile Testing Days US
AgileTD Open Air

Web Security

begleiten wir Dich schon beim Start Deiner Projektreise und

Am liebsten begleiten wir Dich schon beim Start Deiner Projektreise und sind noch nach der Ankunft an Deiner Seite.

Requirements Engineering

Software Development

Testing Services

Mobile App **Testing**

Crafting Sessions

Skilled People

BizDevOps

Agile Transition

MALM

Tech Talk

Certified Tester Foundation Level

© trendig technology services GmbH

- 0. Allgemeines / Einführung »
- 7. trendig technology services unser Schulungsportfolio

IREB® Certified Professional for Requirements Engineering - Foundation Level

ISTQB® Certified Tester Foundation Level (3- und 4-Tage) & Boot Camp

Foundation Level -Agile Tester

Advanced Level - Test Manager Advanced Level - Test Analyst

Advanced Level -**Technical Test Analyst**

Software Testing

Advanced Level - Test **Automation Engineer**

Foundation Level - MAT Mobile App Tester

Advanced Level - Security Tester

SeU - Certified Selenium Engineer

Effiziente Softwaretests im Fachbereich - Grundlagen, Methoden und Best Practices für Abnahmetests

- 0. Allgemeines / Einführung »
- 7. trendig technology services unser Schulungsportfolio

11	Innovation & Design	Design Sprint Master 2.0	Visual Thinking - Innovation through visualisation workshop	
	Software Development	Test-Driven Development	BcU Certified Blockchain Ethereum Professional	
		Einführung in XL Release von XebiaLabs	Continuous Integration with Ruby and/or JavaScript systems	
	Agile Practices	Holistic Testing: strategies for agile teams		
		Foundation Level – Agile Tester	Certified Scrum Master® plus	Certified Scrum Product Owner®
		The Responsibility Process — Train the Trainer		

Certified Tester Foundation Level

© trendig technology services GmbH

16

- 0. Allgemeines / Einführung »7. trendig technology services unsere Schulungen in Zahlen
- trendig

17.000 Teilnehmer

3.000 Schulungen

26 Länder

Unsere weltweiten Bestehensquoten in Prozent %

Agile Testing for the Whole Team

ISTQB Foundation

ISTQB Agile Tester

IREB Foundation

Design Sprint Master

ISTQB Test Automation

13. - 15. Mai 2023 Köln, Deutschland

openair.
agiletestingdays.com

13. - 16. Nov. 2023 Potsdam, Deutschland

agiletestingdays.com

22. - 24. Juni 2023 Chicago, IL, USA

agiletestingdays.us

Certified Tester Foundation Level

© trendig technology services GmbH

18

0. Allgemeines / Einführung »7. trendig technology services

trendig technology services - Hinweise zur Nutzung

Die hier vorliegenden Schulungsunterlagen wurden durch die **trendig technology services GmbH** erstellt. Sie basieren auf dem ISTQB® Syllabus für den Certified Tester, Version 2018 V3.1D.

An in den Unterlagen enthaltenen, eingetragenen Marken hat der jeweilige Inhaber das alleinige Recht, auch wenn dieser nicht explizit aufgeführt wird.

Die Verwendung der Unterlagen, ganz oder in Auszügen, ist Dritten untersagt. Kunden der **trendig technology services GmbH** dürfen die Unterlagen intern, für nicht kommerzielle Zwecke, nutzen.

Wenn Sie nicht sicher sind, ob die von Ihnen geplante Nutzung zulässig ist, wenden Sie sich bitte direkt an die **trendig technology services GmbH** (formerly D&H – Díaz und Hilterscheid Unternehmensberatung GmbH) www.trendig.com

Berlin, 11.01.23

Certified Tester Foundation Level

© trendig technology services GmbH

I. Grundlagen des Softwaretestens » Agenda

Kapitel I – Grundlagen des Testens

- I/1 Was ist Testen?
- I/2 Warum ist Testen notwendig?
- I/3 Sieben Grundsätze des Softwaretestens
- I/4 Testprozess
- I/5 Die Psychologie des Testens

20

I. Grundlagen des Softwaretestens » Lernziele

Lernziele für die Grundlagen des Softwaretestens

1 von 2

1.1 Was ist Testen?

- FL-1.1.1 (K1) Typische Ziele des Testens identifizieren können
- FL-1.1.2 (K2) Testen von Debugging unterscheiden können

1.2 Warum ist Testen notwendig?

- FL-1.2.1 (K2) Beispiele dafür geben können, warum Testen notwendig ist
- FL-1.2.2 (K2) Die Beziehung zwischen Testen und Qualitätssicherung beschreiben können und Beispiele dafür geben können, wie Testen zu höherer Qualität beiträgt
- FL-1.2.3 (K2) Zwischen Fehlhandlung, Fehlerzustand und Fehlerwirkung unterscheiden können
- FL-1.2.4 (K2) Zwischen der Grundursache eines Fehlerzustands und seinen Auswirkungen unterscheiden können

1.3 Sieben Grundsätze des Testens

FL-1.3.1 (K2) Die sieben Grundsätze des Softwaretestens erklären können

Certified Tester Foundation Level

© trendig technology services GmbH

22

I. Grundlagen des Softwaretestens » Lernziele

Lernziele für die Grundlagen des Softwaretestens

2 von 2

1.4 Testprozess

- FL-1.4.1 (K2) Die Auswirkungen des Kontexts auf den Testprozess erklären können
- FL-1.4.2 (K2) Die Testaktivitäten und zugehörigen Aufgaben innerhalb des Testprozesses beschreiben können
- FL-1.4.3 (K2) Arbeitsergebnisse unterscheiden können, die den Testprozess unterstützen
- FL-1.4.4 (K2) Die Bedeutung der Pflege der Verfolgbarkeit zwischen Testbasis und Testarbeitsergebnissen erklären können

1.5 Die Psychologie des Testens

- FL-1.5.1 (K1) Die psychologischen Faktoren identifizieren können, die den Erfolg des Testens beeinflussen
- FL-1.5.2 (K2) Den Unterschied zwischen der für Testaktivitäten erforderlichen Denkweise und der für Entwicklungsaktivitäten erforderlichen Denkweise erklären können

I. Grundlagen des Softwaretestens » Agenda

Kapitel I – Grundlagen des Testens

- I/1 Was ist Testen?
- I/2 Warum ist Testen notwendig?
- I/3 Sieben Grundsätze des Softwaretestens
- I/4 Testprozess
- I/5 Die Psychologie des Testens

Certified Tester Foundation Level

© trendig technology services GmbH

- I. Grundlagen des Softwaretestens »
- 1. Was ist Testen?

Testen ist ein komplexer Prozess

- Testen ist mehr als nur Testdurchführung, sprich Software ausführen und Ergebnisse prüfen
- Der Testprozess (Kapitel 1.4) besteht aus unterschiedlichen Phasen
 - 1. Testplanung, Testüberwachung und -steuerung (durch Testmanager)
 - 2. Testanalyse
 - 3. Testentwurf
 - 4. Testrealisierung

(durch Testanalyst, Tester u.ä)

- 5. Testdurchführung
- 6. Testabschluss (durch Testmanager)
- Die Testaktivitäten umfassen
 - o Das Prüfen von Arbeitsergebnissen (statische Tests, Verifizierung, Spezifikation) "Wird das Produkt richtig erstellt?"
 - o Das Ausführen von Software (dynamische Tests, Validierung, einsatzzweckgeeignet) "Wird das richtige Produkt entwickelt?"

I. Grundlagen des Softwaretestens »

1. Was ist Testen?

Begriffe

1 von 2

- Anforderung (requirement)
 - (1) Eine Vorschrift, die zu erfüllende Kriterien enthält. [ISO 24765]
 - (2) Eine Anforderung ist eine Aussage über die notwendige Beschaffenheit oder **Fähigkeit, die ein System oder Systemteile erfüllen** oder besitzen muss, um einen Vertrag zu erfüllen oder einer **Norm**, einer Spezifikation oder anderen, formell vorgegebenen Dokumenten zu entsprechen.
- Debugging
 Tätigkeit des Lokalisierens/Identifizierens, Analysierens und Entfernens der Ursachen von Fehlerwirkungen in der Software (i.d.R durch den Entwickler)
- Qualität (lat.: qualitas = Beschaffenheit, Eigenschaft, Zustand)
 (1) Der Grad, in dem ein System, eine Komponente oder ein Prozess die Kundenerwartungen und -bedürfnisse erfüllt.
 - (2) Eine vom Benutzer benötigte **Eigenschaft** oder Fähigkeit, **die eine Software erfüllen** oder besitzen muss, um einen Vertrag, einen Standard, eine Spezifikation oder ein anderes formales Dokument zu erfüllen

Certified Tester Foundation Level

© trendig technology services GmbH

00

I. Grundlagen des Softwaretestens »1. Was ist Testen?

Begriffe

2 von 2

- Testziel (test objective)
 Ein Grund oder Zweck für den Entwurf und die Ausführung von Tests.
- Testen (testing)
 Der Prozess, der aus allen Aktivitäten des Lebenszyklus besteht (sowohl statisch als auch dynamisch), die sich mit der Planung, Vorbereitung und Bewertung eines Softwareprodukts und dazugehöriger Arbeitsergebnisse befassen. Ziel des Prozesses ist sicherzustellen, dass diese allen festgelegten Anforderungen genügen und etwaige Fehlerzustände zu finden.
- Testobjekt (test object)
 Die Komponente oder das System, welches getestet wird (Testelement).
- Testbedingung (test condition)
 Ein Aspekt der Testbasis, der für die Erreichung bestimmter Testziele
 relevant ist. Ist definiert als eine Einheit, ein Ereignis, eine Transaktion, ein
 Qualitätsmerkmal, ein strukturelles Element, welches durch einen oder
 mehrere Testfälle überprüft werden kann.

1. Was ist Testen?

Typische Ziele des Testens

- Fehlervermeidung durch die Bewertung von Arbeitsergebnissen
 - o Anforderungen, User Stories, Architekturdesign, Code
- Sicherstellen, dass alle spezifizierten Anforderungen erfüllt sind (verifizieren)
 - o Konformität der vertraglichen, rechtlichen, regulatorischen Anforderungen prüfen
 - o Nachweis der Einhaltung von branchenüblichen Standards und Normen liefern
- Das Testobjekt auf Vollständigkeit prüfen
- Nachweis über die vom User erwartete Funktionalität liefern (validieren)
- Vertrauen in die Qualität der gelieferten Software erzielen
- Aufdecken von Fehlerzuständen und -wirkungen, um das Risiko ungenügender Softwarequalität zu minimieren
- Stakeholdern belastbare Informationen (u.a. Metriken) geben
 - Zur Entscheidungsfindung über den Stand und das Qualitätsniveau des Testobjekts

Certified Tester Foundation Level

© trendig technology services GmbH

2

- I. Grundlagen des Softwaretestens »
- 1. Was ist Testen?

Kontextabhängige Testziele

Abhängig vom Softwareentwicklungslebenszyklus-Modell

Die Ziele des Testens variieren je nach eingesetztem Softwareentwicklungslebenszyklus-Modell und der zu testenden Teststufe

- z.B. beim Komponententest
 - o So viele Fehlerwirkungen wie möglich erzeugen, um Fehlerzustände zu beheben
 - o Die Codeüberdeckung der Komponenten (Units, Module) erhöhen
- z.B. beim Abnahmetest
 - o Funktioniert das System wie erwartet?
 - o Wurden die Anforderungen erfüllt (Vertrauen in die Qualität)?
 - o Kann die Freigabereife durch die Stakeholder bewertet werden?
- z.B. beim Wartungstest
 - o Ist die Altfunktionalität sichergestellt?
 - O Wurden versehentlich neue Fehlerzustände eingebaut?

Testen und Debugging (testing, debugging)

Debugging Debugging Nachtest Fehler-Fehler-Test lokalisierung beseitigung

Test und Fehlernachtest sind Tester-Aktivitäten

Beim dynamischen Test können Fehlerwirkungen aufgezeigt werden, die auf Fehlerzuständen in der Software basieren. Das Nachtesten durch den Tester stellt sicher, dass die ursprünglichen Fehlerzustände behoben wurden

Debugging ist Entwickler-Aktivität

Beim Debugging (Fehlerlokalisierung und -beseitigung) werden die Fehlerzustände lokalisiert, analysiert und entfernt. Entwickler führen i.d.R. die hierzu gehörigen Komponententests bzw. bzw. Komponenten-Integrationstests (kontinuierliche Integration) durch

Beispiel: Im agilen Umfeld können auch Tester am Debugging und im Komponententest beteiligt sein

Certified Tester Foundation Level

© trendig technology services GmbH

- I. Grundlagen des Softwaretestens »
- 1. Was ist Testen?

Zusammenfassung

- Testen selbst ist ein Prozess innerhalb des Entwicklungsprozesses:
 - 1. Testplanung, Testüberwachung und -steuerung
 - 2. Testanalyse
 - 3. Testentwurf
 - 4. Testrealisierung
 - 5. Testdurchführung
 - 6. Testabschluss
- Testen hat unterschiedliche Ziele, z. B. das Messen der aktuellen Qualität oder das Finden von Fehlerzuständen und -wirkungen
- Frühes Testen anstreben, denn spät entdeckte Fehlerwirkungen sind teuer
- Dynamische Tests führen Programme aus, statische Tests nicht
- Beim dynamischen Test suchen Tester Fehlerwirkungen und protokollieren diese (testen), Entwickler suchen Fehlerzustände und beseitigen diese (debuggen)

I. Grundlagen des Softwaretestens » Agenda

Kapitel I – Grundlagen des Softwaretestens

- I/1 Was ist Testen?
- I/2 Warum ist Testen notwendig?
- I/3 Sieben Grundsätze des Softwaretestens
- I/4 Testprozess
- I/5 Die Psychologie des Testens

Certified Tester Foundation Level

© trendig technology services GmbH

22

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Der Beitrag des Testens zum Erfolg und zur Wertschöpfung der Unternehmen!

Senkung des Risikos von Fehlerzuständen und -wirkungen (beim Einsatz)

Gründliches Testen von Komponenten und Systemen sowie der Dokumentation hilft, das Risiko von Fehlerwirkungen zu mindern, die im Betrieb auftreten können.

Steigerung der Qualität

Das Finden von Fehlerzuständen und Fehlerwirkungen sowie in Folge deren Behebung tragen zur Verbesserung der Qualität von Komponenten oder Systemen bei.

Erfüllung von Auflagen

Tests können durch den Auftraggeber oder Gesetzgeber vorgeschrieben werden oder erforderlich sein, um Industrienormen zu erfüllen (z.B. BAIT des BaFin, GoBD, TÜV).

Beispiel 1: Mars Climate Orbiter

MARS

Inch und Fuß statt Meter

Man möchte fast an einen Aprilscherz glauben: Die NASA gab gestern bekannt, warum ihre Sonde Mars Climate Orbiter beim Anflug auf den Mars verloren ging: Bei der Kommunikation zwischen zwei Kontrollteams wurden unterschiedliche Maßeinheiten verwendet.

"Menschen machen manchmal Fehler", meinte Dr. Edward Weiler von der NASA und das Problem sei nicht der Fehler an sich gewesen, sondern die Tatsache, dass dieser von den internen Kontrollmechanismen nicht entdeckt wurde. Das Ergebnis der ersten Untersuchungen, warum die Sonde Mars Climate Orbiter vor einer Woche verloren ging, ist relativ banal: Beim Datenaustausch zwischen dem Missions-Navigationsteam in Kalifornien und dem Mars Climate Orbiter-Team in Colorado wurden unterschiedliche Maßeinheiten verwendet: Ein Team benutzte englische Einheiten wie Inches und Fuß, das andere das metrische System. So wurden die Daten für den Anflug auf den roten Planeten falsch berechnet. (...)

Schon am 3. Dezember soll der Mars Polar Lander auf dem roten Planeten aufsetzen. Und einen weiteren Fehlschlag könnte sich die NASA wohl kaum erlauben.

Quelle: www.astronews.com/news/artikel/1999/10/9910-01.shtml

Certified Tester Foundation Level

© trendig technology services GmbH

34

I. Grundlagen des Softwaretestens »2. Warum ist Testen notwendig?

Beispiel 2: Tödliche Röntgenstrahlen

Der nächste Fehler stammt aus dem medizinischen Bereich. Dort gab es Probleme mit dem Therac 25, ein Gerät, welches zur Strahlentherapie eingesetzt wurde.

Das Gerät kann sowohl Beta- als auch Gammastrahlen erzeugen. Letztere werden dadurch erzeugt, dass man Elektronen mit sehr hoher Geschwindigkeit auf einen Metallblock schießt.

Nachdem Therac 25 mehrmals eine tödliche Strahlendosis abgeschossen hatte, bemerkte man, dass dieser Effekt auftritt, wenn man die Daten zu schnell in das Gerät eingibt. Dieser startete dann sofort, ohne dass sich der Metallblock in Position befand. Beim Vorgänger funktionierte alles noch elektro-mechanisch. Beim Nachfolger kam die Software zum Einsatz.

Quelle: www.giga.de/features/storyarchiv/00127860_die_schlimmsten/seite_4.html

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Testen als Erfolgsfaktor

1 von 2

- Problematische Inbetriebnahmen vermeiden
 - Die Software enthält noch Fehlerzustände und erzeugt Fehlerwirkungen
 - o Die Bedürfnisse der Stakeholder werden nicht erfüllt und das Vertrauen schwindet
- Auswahl der Testverfahren durch Testkompetenz
 - Einsatz geeigneter Testverfahren reduzieren Fehlerzustände
 - o Die richtigen Testverfahren passend zu Teststufe und Zeitpunkt auswählen
- Fehlerzustände in Anforderungen aufdecken
 - Tester früh einbinden und Reviews (siehe Kapitel 3) durchführen
 - z.B. schon bei Anforderungsreviews und User-Stories-Refinements

Certified Tester Foundation Level

© trendig technology services GmbH

36

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Testen als Erfolgsfaktor

2 von 2

- Enge Zusammenarbeit der Tester und Entwickler Verständnis erzielen
 - o Entwurfsfehler durch Zusammenarbeit mit den Systementwicklern vermeiden
 - o Fehlerzustände im Code durch Zusammenarbeit mit den Entwicklern vermeiden
- Verifizierung und Validierung
 - Prüfung der Umsetzung der Anforderungen und der Bedürfnisse der Stakeholder
 - Verifizierung und Validierung der Software durch Tester vor der Freigabe

Begriffe

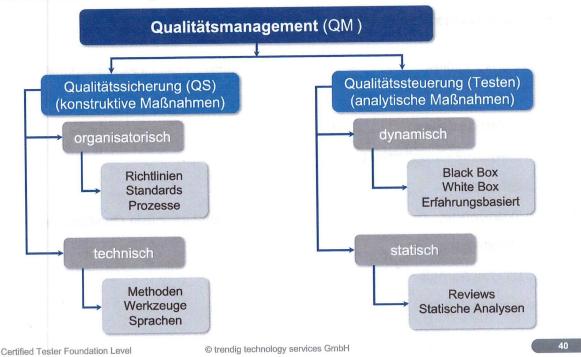
- Qualitätssicherung (quality assurance) Teil des Qualitätsmanagements, das darauf gerichtet ist, Vertrauen in die Erfüllung der Qualitätsanforderungen zu erzeugen. [ISO 9000]
- Verifizierung (verification) Bestätigung durch Bereitstellung eines objektiven Nachweises, dass festgelegte Anforderungen erfüllt worden sind. [ISO 9000]
- Validierung (validation) Bestätigung durch Bereitstellung eines objektiven Nachweises, dass die Anforderungen für einen spezifischen beabsichtigten Gebrauch oder eine spezifische beabsichtigte Anwendung erfüllt worden sind. [ISO 9000]

Certified Tester Foundation Level

© trendig technology services GmbH

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Qualitätssicherung vs. Testen


Qualitätsmanagement (organisationsübergreifend)

- Umfasst alle Aktivitäten zur Leitung und Steuerung von Qualität
- Qualitätssicherung und Qualitätssteuerung sind wichtige Bestandteile
- a) Qualitätssicherung (Quality Assurance)
 - o Konstruktive Maßnahmen zur Fehlervermeidung
 - o Einhaltung gültiger Prozesse zur Erreichung der angemessenen Reifegrade
 - o Vermeidung von Fehlerzuständen in Arbeitsergebnissen mit Hilfe der Prozesse
 - Grundursachenanalyse zur Feststellung und Behebung von Fehlerzuständen
 - o Prozessverbesserungen durch Umsetzung der Befunde aus Retrospektiven
 - Korrektes Testen durch korrekte Ausführung des gesamten Prozesses
- b) Qualitätssteuerung (Quality Control)
 - o Aktivitäten (Testen und Reviews) zur Erreichung von Qualitätsgraden
 - o Testaktivitäten als Bestandteil des SW-Entwicklungs- und -wartungsprozesses zwecks Fehlerfindung

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Qualitätssicherung vs. Testen

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Qualitätssteuerung (~Testen)

Zielt auf die Erhöhung der Produktqualität mittels Prüf- und Testverfahren ab.

Leitmotive

- Fehler sollen möglichst früh gefunden werden
- Statische Tests führen das Testobjekt nicht aus, finden Fehlerzustände
- Dynamische Tests führen das Testobjekt aus, finden Fehlerwirkungen

^{*} Wird jetzt im Advanced Level behandelt

Softwarequalität

Softwarequalität setzt sich nach ISO 25010 zusammen aus

Funktionalität

funktionales Qualitätsmerkmal

- Zuverlässigkeit
- o Gebrauchstauglichkeit
- o Effizienz
- o Wartbarkeit
- o Übertragbarkeit
- o (IT-)Sicherheit
- Kompatibilität

nicht-funktionale Qualitätsmerkmale

Certified Tester Foundation Level

© trendig technology services GmbH

42

I. Grundlagen des Softwaretestens »2. Warum ist Testen notwendig?

Funktionales Qualitätsmerkmal

- Funktionale Eignung (functional suitability)
 Der Grad, zu dem eine Komponente oder ein System Funktionen zur Verfügung stellt, welche unter festgelegten Bedingungen explizit genannte und implizite Bedürfnisse erfüllen. [ISO 25010]
 - Angemessenheit (suitability)
 Die Fähigkeit eines Softwareprodukts für spezifizierte Aufgaben und Zielsetzungen der Benutzer einen geeigneten Satz Funktionen zu liefern
 - Korrektheit (functional correctness)
 Die richtigen oder vereinbarten Ergebnisse oder Wirkungen mit dem benötigten Grad an Genauigkeit zu liefern
 - Vollständigkeit (functional completeness)
 Vollständige Umsetzung der Anforderungen

Nicht-funktionale Qualitätsmerkmale

1 von 3

Zuverlässigkeit (reliability)

Der Grad, zu dem eine Komponente oder ein System seine spezifizierten Funktionen unter den festgelegten Bedingungen während einer bestimmten Zeitspanne ausführt. [ISO 25010]

Reife (maturity), Verfügbarkeit (availability), Fehlertoleranz (fault-tolerance), Wiederherstellbarkeit (recoverability)

Gebrauchstauglichkeit (usability)

Der Grad, zu dem eine Komponente oder ein System durch bestimmte Benutzer in einem bestimmten Nutzungskontext genutzt werden kann, um festgelegte Ziele effektiv, effizient und zufriedenstellend zu erreichen. [ISO 9241-11]

Erlernbarkeit (learnability), Operabilität / Bedienbarkeit (operability), Barrierefreiheit (accessibility)

Certified Tester Foundation Level

© trendig technology services GmbH

44

I. Grundlagen des Softwaretestens »2. Warum ist Testen notwendig?

Nicht-funktionale Qualitätsmerkmale

2 von 3

Effizienz (performance efficiency)

Eingesetzte Mittel im Verhältnis zu dem Ausmaß, in dem Benutzer spezifische Ziele erreichen. [ISO 9241-11]

Antwortzeitverhalten (time behaviour), Ressourcenverbrauch (resource utilisation), Kapazität (capacity)

Wartbarkeit (maintainability)

Der Grad, zu dem eine Komponente oder ein System von den dafür vorgesehenen Personen gewartet werden kann.

Modularität (modularity), Wiederverwendbarkeit (reusability), Analysierbarkeit (analysability), Modifizierbarkeit (modifiability), Prüfbarkeit (testability)

Übertragbarkeit (portability)

Die Einfachheit, mit der eine Software von einer Hardware- oder Softwareumgebung in eine andere übertragen werden kann.

Anpassungsfähigkeit (adaptability), Installierbarkeit (installability), Austauschbarkeit (replaceability)

Nicht-funktionale Qualitätsmerkmale

3 von 3

• (IT-)Sicherheit (security)

Der Grad, zu dem eine Komponente oder eine System Informationen und Daten schützt, so dass Personen oder andere Komponenten oder Systeme nur einen solchen Grad an Zugriff erhalten, der ihrer Berechtigungsart und -stufe entspricht.

Vertraulichkeit (confidentiality), Integrität (integrity), Nachweisbarkeit (non-repudiation), Verantwortlichkeit (accountability), Authentizität (authenticity)

Kompatibilität (compatibility)

Der Grad, zu dem eine Komponente oder ein System Informationen mit anderen Komponenten oder Systemen austauschen kann.

Interoperabilität (interoperability), Koexistenz (co-existence)

Certified Tester Foundation Level

© trendig technology services GmbH

46

- I. Grundlagen des Softwaretestens »
- 2. Warum ist Testen notwendig?

Fehlhandlungen, Fehlerzustände und Fehlerwirkungen

 Fehlhandlungen erzeugen einen Fehlerzustand in einem Arbeitsergebnis Gründe für Fehlhandlungen Zeitdruck, menschliche Fehlbarkeit, Ungenauigkeit, Unerfahrenheit,

Missverständnisse, Komplexität, fehlerhafte Anforderung, neue Technologie

- Fehlerzustände in Software und Systemen k\u00f6nnen Fehlerwirkungen erzeugen, m\u00fcssen aber nicht
- Fehlerwirkungen durch Umgebungsbedingungen
 z.B. im Betrieb der Software geänderte Hardware-Umgebung, Hardware-Defekte, Strahlungs- oder Temperatureinflüsse

Ausgetauschte Nachbarsysteme, Netzwerküberlastungen, Plattencrashs, Stromschwankungen, elektromagnetische Felder

"Falsch positive" Test-Ergebnisse berichtete Fehlerzustände, die keine sind, z.B. Fehlerzustände in Testdaten, Testmitteln, Testumgebung (nicht im Testobjekt)

"Falsch negative" Test-Ergebnisse Tests, die Fehlerzustände nicht entdecken, die sie aber hätten entdecken sollen

Fehlerzustände, Grundursachen und Wirkungen

Grundursachen

Ziel ist es, das Auftreten von ähnlichen Fehlerzuständen zu erkennen, zu analysieren und durch geeignete Maßnahmen, z.B. durch Schulungen, zu mindern. Die Konzentration auf die bedeutendsten Grundursachen bringt den meisten Erfolg

Grundursachenanalyse

Als Bestandteil der kontinuierlichen Testprozessverbesserung (KVP) kann die Grundursachenanalyse gefolgt von geeigneten Maßnahmen als Wirkung das Auftreten einer Vielzahl von zukünftigen Fehlerzuständen verhindern (Expert Level Test Management)

Beispiel:

Eine Häufung von falschen Zinsberechnungen, die durch Kundenreklamationen aufgefallen waren, beruhte auf einer Ungenauigkeit in einer User-Story, resultierend aus unzureichendem Wissen des Product Owners. Lösung: Schulung des Product Owners

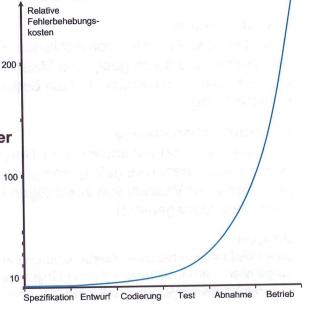
Certified Tester Foundation Level

© trendig technology services GmbH

I. Grundlagen des Softwaretestens » 2. Warum ist Testen notwendig?

Begriffe

- Fehlhandlung (error) [IEEE 610] Die menschliche Handlung, die zu einem falschen Ergebnis führt.
- Fehlerzustand / Defekt (defect / bug) Eine Unzulänglichkeit oder ein Mangel in einem Arbeitsergebnis, sodass es seine Anforderungen oder Spezifikationen nicht erfüllt.
- Fehlerwirkung (failure) Ein Ereignis in welchem eine Komponente oder ein System eine geforderte Funktion nicht im spezifizierten Rahmen ausführt. [ISO 24765]
- Grundursache (root cause) Die Ursache eines Fehlerzustands. Wenn man sie behebt, dann wird das Vorkommen der Fehlerart reduziert oder eliminiert. [CMMI]
- Fehlschlag (failure) Ein Test(-fall) schlägt fehl, wenn das aktuelle Ergebnis nicht mit dem vorausgesagten Ergebnis übereinstimmt.



Fehlerkosten

Die **Fehlerbehebungskosten** steigen mit der Verweildauer des Fehlers im System

Je **früher** ein Fehler im Softwareentwicklungsprozess gefunden wird, desto **kostengünstiger** wird seine Behebung

Beispiel: Ein Spezifikationsfehler der erst im laufenden Betrieb gefunden und behoben wird, kann ein erneutes Durchlaufen aller dazwischenliegenden Phasen bedeuten!

Quelle: nach Boehm (1981)

Certified Tester Foundation Level

© trendig technology services GmbH

5

I. Grundlagen des Softwaretestens »2. Warum ist Testen notwendig? – Summary

trendig

Zusammenfassung

- Softwarefehler können verheerende Auswirkungen haben und sehr teuer sein
- Durch Fehlhandlungen können Fehlerzustände / Defects in das Testobjekt kommen, die sich mit Fehlerwirkungen zeigen
- Standard ISO 25010 regelt den Begriff der Softwarequalität. Funktionale und nicht-funktionale Qualitätsmerkmale bestimmen die Gesamtqualität
- Das Qualitätsmanagement umfasst Qualitätssicherung (konstruktive Maßnahmen) und Qualitätssteuerung (analytische Maßnahmen)
- Software QS mit Fehlerfindung, -korrektur und Qualitätssicherung
- Ähnliche Fehlerzustände, Grundursachenanalyse zur Prozessverbesserung und Fehlerverhinderung

I. Grundlagen des Softwaretestens » Agenda

Kapitel I – Grundlagen des Softwaretestens

- I/1 Was ist Testen?
- I/2 Warum ist Testen notwendig?
- I/3 Sieben Grundsätze des Testens
- I/4 Testprozess
- I/5 Die Psychologie des Testens

Certified Tester Foundation Level

© trendig technology services GmbH

--

- I. Grundlagen des Softwaretestens »
- 3. Sieben Grundsätze des Testens

Grundsatz 1: Testen zeigt die Anwesenheit von Fehlerzuständen

(Testing shows the presence of defects, not their absence)

Testen zeigt das Vorhandensein von Fehlerzustände

Abweichung während des Testens zeigt Fehlerwirkung

Testen zeigt nicht die Abwesenheit von Fehlerzuständen

Ausreichendes Testen verringert die Wahrscheinlichkeit des Vorhandenseins von unentdeckten Fehlerzuständen; mit Testen lässt sich jedoch nicht beweisen, dass ein Testobjekt frei von Fehlern wäre.

Keinen Fehlerzustand gefunden zu haben, bedeutet keinen Beweis für Korrektheit.

Hempels Paradox oder Rabenparadox ist ein nach dem Philosophen Carl Gustav Hempel benanntes Problem der Erkenntnistheorie. Das Paradoxon besteht darin, dass eine Allaussage über die Eigenschaft bestimmter Objekte scheinbar durch Beobachtungen beliebiger anderer Objekte ohne diese Eigenschaft bestätigt werden kann.

Grundsatz 2: Vollständiges Testen ist nicht möglich

(Exhaustive testing is impossible)

Vollständiges Testen

Ein vollständiger Test berücksichtigt alle möglichen Eingabewerte und deren Kombinationen mit allen denkbaren Vorbedingungen

Testfallexplosion

Bezeichnung für den (mit der Anzahl der Parameter) exponentiell steigenden Aufwand von Tests bei einem vollständigen Test

Stichprobentest

Durchführung eines Tests mit einer (methodisch oder zufällig ausgewählten) Stichprobe aller möglichen Eingabewerte als Testfälle

Tests sind immer nur **Stichproben** und der **Testaufwand** ist entsprechend Risikoanalyse, Testverfahren und Priorität festzulegen.

Certified Tester Foundation Level

© trendig technology services GmbH

54

- I. Grundlagen des Softwaretestens »
- 3. Sieben Grundsätze des Testens

Grundsatz 3: Frühes Testen spart Zeit und Geld

(Early testing saves time and money)

Je früher ein Fehlerzustand entdeckt wird, desto günstiger seine Behebung

Am Günstigsten ist die Fehlerbehebung vor Umsetzung des Fehlers

Auch Konzepte/Spezifikationen können bereits getestet werden

Unentdeckte Konzeptfehler können teure Folgefehler verursachen

Testen beginnt schon früh im Softwarelebenszyklus

Reduktion und Vermeidung von kostenintensiven, nachträglichen Änderungen

Testziele definieren und verfolgen

"Früher anfangen" ist eine einfache, aber sehr wirkungsvolle Strategie zur Risikoreduktion.

Grundsatz 4: Häufung von Fehlerzuständen

(Defect clustering)

Je Modul erfolgt eine Schätzung über die erwartete Fehlerdichte

Der Testaufwand ergibt sich proportional zur Schätzung

Die reale Fehlerdichte zeigt, welche Module die meisten Fehlerzustände beinhalten, ein wichtiger Bestandteil der Risikoanalyse

Oft enthalten wenige Module die meisten **Fehlerzustände** oder sind für die meisten **Fehlerwirkungen** im Betrieb verantwortlich

Wo ein Fehler (-zustand oder -wirkung) gefunden wurde, oft stecken noch mehr!

Fehler (-zustände oder -wirkungen) treten meist **gehäuft** auf, wie Pilze oder Kakerlaken © .

Certified Tester Foundation Level

© trendig technology services GmbH

56

- I. Grundlagen des Softwaretestens »
- 3. Sieben Grundsätze des Testens

Grundsatz 5: Vorsicht vor dem Pestizid-Paradoxon

(Beware of the pesticide paradox)

Das wiederholte Ausführen immer gleicher Testfälle zeigt irgendwann keine neuen Fehlerzustände auf*

Testfälle sind **regelmäßig** zu prüfen und ggf. zu modifizieren oder neue zu erstellen, um neue Fehlerzustände zu finden

Tests bei verändertem Testgegenstand

Wiederholungen von bereits durchgeführten Testfällen können jedoch sinnvoll sein, z. B. nach Programmerweiterungen, Korrekturen, Betriebssystemwechsel

Bei automatisierten Regressionstests hat das Pestizid-Paradoxon einen vermeintlich positiven Effekt (geringe Anzahl Regressionsfehler)

Bei Testfällen, von denen angenommen wird, dass sie mehrfach wiederholt werden, kann sich **Testautomatisierung** lohnen

*) so wie Pestizide irgendwann nicht mehr wirksam gegen Insekten sind

Grundsatz 6: Testen ist kontextabhängig

(Testing is context dependent)

Testen in Abhängigkeit des zu testenden Systems

- Unterschiedliche Testgegenstände sind unterschiedlich zu testen
- Motorsteuerung eines PKW braucht andere Tests als eine mobile E-Commerce-Applikation eines Versandhauses
- Sicherheitskritische Systeme werden anders getestet als Systeme, die z. B. Leib und Leben nicht gefährden
- Das Testen in agilen Projekten unterscheidet sich vom Testen bei sequentiellen Softwareentwicklungslebenszyklus-Modellen

Testumgebung vs. Produktionsumgebung

- Ein Test sollte nicht in der Produktionsumgebung, aber in einer produktionsnahen Umgebung durchgeführt werden
- Immer vorhandene Abweichungen zwischen den beiden Umgebungen beeinträchtigen die Aussagekraft von Tests

Certified Tester Foundation Level

© trendig technology services GmbH

58

- I. Grundlagen des Softwaretestens »
- 3. Sieben Grundsätze des Testens

Grundsatz 7: Trugschluss: "Keine Fehler" bedeutet ein brauchbares System (Absence-of-errors fallacy)

Alle Fehlerzustände wird das Testen in der Regel nicht finden (siehe Grundsätze 1 und 2). Aber die wichtigsten Fehler sollten entdeckt worden sein!

Das alleine ist aber noch keine Aussage über die Qualität der abgelieferten Software oder ein brauchbares System!

Die **Bedürfnisse** und **Erwartungen** der Nutzer können vom Leistungsumfang der tatsächlich gelieferten Software abweichen

Die Qualität kann geringwertiger sein, als bei vergleichbaren Systemen

Qualität (im Sinne von "Erfüllen der Erwartungen") kann nicht nachträglich in eine Software hinein getestet werden, sondern muss bereits vorne hinein konstruiert werden!

Zusammenfassung

- Tests können Fehlerzustände in der Software finden, aber nicht Fehlerfreiheit nachweisen
- Vollständiges Testen von (nicht-trivialen) Programmen ist unmöglich, daher ist i. d. R. eine Stichprobenbildung erforderlich
- Frühes Testen hilft Kosten zu sparen, denn je früher ein Fehlerzustand entdeckt wird, desto kostengünstiger ist seine Behebung
- · Fehlerzustände treten gehäuft auf: wo einer ist, sind oft auch noch andere
- Die identische Wiederholung von Testfällen findet keine weiteren Fehlerzustände
- Die konkrete Ausgestaltung der Tests hängt vom Umfeld ab
- "Fehlerfreiheit" bedeutet nicht automatisch Gebrauchstauglichkeit

Certified Tester Foundation Level

© trendig technology services GmbH

60

I. Grundlagen des Softwaretestens » Agenda

Kapitel I – Grundlagen des Softwaretestens

- I/1 Was ist Testen?
- I/2 Warum ist Testen notwendig?
- I/3 Sieben Grundsätze des Testens
- I/4 Testprozess
- I/5 Die Psychologie des Testens

Testprozess im Kontext

Es gibt keinen universellen Softwaretestprozess!

- · Es gibt aber gebräuchliche Testaktivitäten
- Abhängig von der vorgegebenen Situation können die Aktivitäten variieren
- Die Teststrategie (des Unternehmens) legt fest, wann und wie diese Aktivitäten im Testprozess durchzuführen sind

Kontextabhängige Faktoren mit Einfluss auf den Testprozess

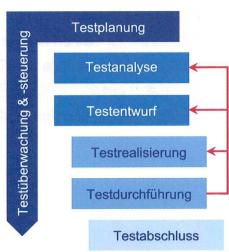
- o Eingesetztes Softwareentwicklungslebenszyklus-Modell, Projektumfang
- o Produkt- und Projektrisiken und die möglichen Teststufen und -arten
- o Geschäftsbereich, Richtlinien des Unternehmens, interne und externe Standards
- o Budget, Ressourcen, Fristen, Komplexität, regulatorische Anforderungen, Verträge

Die Testbasis benötigt messbare, definierte Überdeckungskriterien

- o Nutzung als Key-Performance-Indicators (KPIs) zur Lenkung der Testaktivitäten
- Aufzeigen des Erreichens von Zielen des Softwaretests

Certified Tester Foundation Level

© trendig technology services GmbH


62

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben

Testaktivitäten und Aufgaben

- Der Testprozess besteht aus verschiedenen Hauptgruppen von Aktivitäten
- Jede Gruppe besteht aus mehreren Einzelaufgaben, die nach Projekt oder Release variieren
- Bei agiler Entwicklung finden auch die Testaktivitäten iterativ und kontinuierlich statt
- Aber auch bei sequentieller Entwicklung wird die schrittweise, logische Abfolge oft durch Überlappung, Kombination usw. verlassen. Daher ist die projekt- bzw. systemspezifische Anpassung der Hauptaktivitäten grundsätzlich einzukalkulieren

Begriffe zum Testprozess (~ in der Kompetenz des Test-Managers)

- Testplanung (test planning) Eine Aktivität im Testprozess zur Erstellung und Fortschreibung des Testkonzepts.
- Testüberwachung (test monitoring) Eine Aktivität des Testmanagers, die die Prüfung des Status der Testaktivitäten, das Identifizieren von Abweichungen vom geplanten oder erwarteten Status, und das Berichten über den Status an die Stakeholder beinhaltet.
- Teststeuerung (test control) Die Managementaufgabe zur Entwicklung und Anwendung von Korrekturmaßnahmen, um in einem Testprojekt eine Abweichung vom geplanten Vorgehen zu beherrschen.
- Testabschluss (test completion) Die Aktivitäten am Abschluss des Tests sammelt Daten aus beendeten Testaktivitäten, um Erfahrungen, Testmittel und andere relevante Informationen zu konsolidieren.

Certified Tester Foundation Level

© trendig technology services GmbH

I. Grundlagen des Softwaretestens » 4. Testprozess: Testaktivitäten und Aufgaben

Begriffe zum Testprozess (~ in der Kompetenz des Testers)

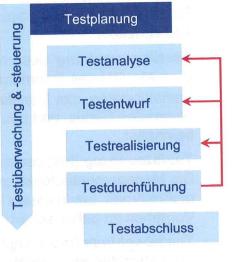
2 von 2

- Testanalyse (test analysis) Die Aktivität, die Testbedingungen durch eine Analyse der Testbasis identifiziert.
- Testentwurf (test design) Die Aktivität, die Testfälle aus Testbedingungen ableitet und spezifiziert. [Nach ISO 29119] Siehe auch: Testentwurfsspezifikation.
- Testrealisierung (test implementation) Die Tätigkeit, die auf Basis der Testanalyse und des -Entwurfs die Testmittel vorbereitet, welche für die Testdurchführung benötigt werden.
- Testdurchführung (test execution) Der Prozess der Ausführung eines Tests für eine Komponente oder ein System, der IST-Ergebnisse erzeugt.

Testplanung (test planning)

Definition der Testziele

 Ggf. unter Berücksichtigung der Qualitätsziele des Unternehmens


Festlegung der notwendigen Testaktivitäten

- Zum Erreichen des Aufgabenumfangs und
- Zum Erreichen der Testziele
- Unter Berücksichtigung der Beschränkungen aus dem Umfeld
- Festlegen geeigneter Testverfahren/Aufgaben
- Aufstellen eines Test(zeit)plan (test schedule) zur Einhaltung der Termine / Meilensteine
- Erstellen und Überarbeiten von Testkonzepten
- Planen von Überwachungs- und Steuerungsaktivitäten

Überwiegend in der Verantwortung des TM näheres dazu in Kapitel 5.2 (Testmanagement)

Certified Tester Foundation Level

© trendig technology services GmbH

66

I. Grundlagen des Softwaretestens »4. Testprozess: Testaktivitäten und Aufgaben

Begriffe zu Testplanung und Testanalyse

 Testbasis (test basis)
 Alle Informationen, die als Basis für die Testanalyse und den Testentwurf verwendet werden können. [nach TMap*]

Die Dokumentation, auf der die Herleitung oder Auswahl der Testfälle beruht. ANMERKUNG: Wenn ein Dokument nur über das formale Änderungsverfahren geändert werden kann, handelt es sich um eine festgelegte Testbasis. [Nach Tmap*]

Testobjekt (test object)
 Die Komponente oder das System, welches getestet wird. Siehe auch: Testelement.

Testbedingung (test condition)
 Ein Aspekt der Testbasis, der für die Erreichung bestimmter Testziele relevant ist.

 Verfolgbarkeit (traceability)
 Der Grad, zu dem eine Beziehung zwischen zwei oder mehr Arbeitsergebnissen hergestellt werden kann. (auch bidirektionale Verfolgbarkeit genannt)

^{*} TMap[®] ist ein Modell im Bereich des Testens und der Qualitätssicherung von Software, in der alle anfallenden Aspekte, das Umfeld und die Vorgehensweise strukturiert werden.

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben

Testüberwachung und -steuerung

Testüberwachung (test monitoring)

- Prüfen des tatsächlichen Fortschritts gegen den Test(-zeit)plan per Überwachungsmetriken, definiert im Testkonzept
- Messen und Analysieren von Resultaten

Teststeuerung (test control)

- Überwachen und Fortschreiben des Testfortschritts, der erreichten Testüberdeckung und der Endekriterien
- Analyse der Testergebnisse und -protokolle
- Beurteilung des Grades der Systemqualität
- Treffen von Entscheidungen unter Einbezug der Stakeholder
- Anstoßen von Korrekturmaßnahmen (z.B. mehr Tests, da der Grad an Produktrisikoüberdeckung nicht erreicht werden kann)

Testanalyse

Testentwurf

Testrealisierung

Testdurchführung

Testabschluss

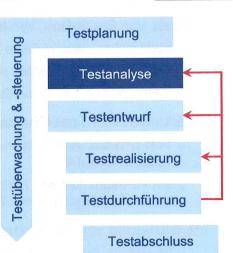
Testplanung

Certified Tester Foundation Level

© trendig technology services GmbH

68

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben



Testanalyse (test analysis) - "was ist zu testen"

Hauptaktivitäten Analyse der Testbasis

- Anforderungsspezifikationen, Fachkonzepte, User-Stories, Epics, Anwendungsfälle, funktionale und nicht-funktionale Anforderungen
- Systemarchitekturdiagramme, Aufrufdiagramme, Modelldiagramme (UML), Systemstruktur, Schnittstellenspezifikationen, etc.
- Realisierung der Komponente/des Systems,
 Code, Datenbankmetadaten, Datenbankabfragen,
 Schnittstellen
- Risikoanalyse über funktionale, nicht-funktionale, strukturelle Aspekte

Identifizierung und Priorisierung der **Testbedingungen Bestimmung** der messbaren **Überdeckungskriterien**

Testanalyse

2 von 3

Bewertung der **Testbasis** und der **Testelemente** Identifikation von **Fehlerarten**

- Mehrdeutigkeiten (Glossar fehlt)
- Auslassungen (Nicht-Zweig fehlt)
- o Inkonsistenzen (nicht gleiche Terminologie)
- Ungenauigkeiten (das System soll performant sein)
- Widersprüche
- o Überflüssige Anweisungen (Systemkontext- / Abgrenzung fehlt)

Identifikation von Features und Feature-Sets, die getestet werden müssen:

- Abgeleitet aus der Testbasis, Priorisierung, funktionale, nicht-funktionale und strukturelle Merkmale berücksichtigen, Risikograd, fachliche und technische Faktoren
- o Bidirektionale Verfolgbarkeit (Testbasis ↔ Testbedingungen (↔ Testfällen))

Certified Tester Foundation Level

© trendig technology services GmbH

70

I. Grundlagen des Softwaretestens »4. Testprozess: Testaktivitäten und Aufgaben

trendig

Testanalyse

3 von 3

Einsatz von Black-Box, White-Box und erfahrungsbasierten Testverfahren

- Stellt sicher, dass wichtige Testbedingungen identifiziert und berücksichtigt werden
- o Testbedingungen werden dadurch präziser definiert
- o Davon profitiert auch die Qualität der Testfälle

Ableitungen von Test-Chartas (als Testziele aus den Testbedingungen)

- Test-Chartas werden beim erfahrungsbasierten Testen eingesetzt (Exploratives Testen, Kapitel 4)
- Bei Verfolgbarkeit der Testziele auf die Testbasis, kann eine Überdeckung auch beim erfahrungsbasierten Testen gemessen werden

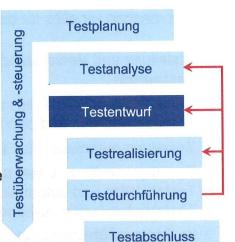
Identifizierung von Fehlerzuständen (als Review)

- o Bewertung der Anforderungen (s. Fehlerarten) und der Kundenbedürfnisse
- o Bei Verfahren wie BDD, ATDD
- Generierung der Testbedingungen aus User-Stories etc. erkennen Fehlerzustände in User-Stories und den Abnahmebedingungen

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben

Testentwurf (test design) – "wie wird getestet"

1 von 2


Ableitung von Testfällen aus Testbedingungen

- Ableiten und Priorisierung von (abstrakten)
 Testfällen (Testsets, etc.)
- Einsatz von Testverfahren (Kap. 4)
- Prüfung von Funktionen (Positivtests) und von Fehlersituationen (Negativtests)

Identifizierung benötigter Testdaten

Entwurf der Testumgebung und Testwerkzeuge

- Entwurf des Testumgebungsaufbaus
- Identifikation der benötigten Infrastruktur und Werkzeuge

Bidirektionale Verfolgbarkeit von

Testbasis ↔ Testbedingungen ↔ Testfällen (↔ Testabläufen) erfassen

Identifizierung von Fehlerzuständen in der Testbasis während des Testentwurfs

Certified Tester Foundation Level

© trendig technology services GmbH

70

I. Grundlagen des Softwaretestens »

4. Testprozess: Testaktivitäten und Aufgaben

Begriffe zum Testentwurf

2 von

Testfall (test case)

Eine Menge von Vorbedingungen, Eingaben, Aktionen (falls anwendbar), erwarteten Ergebnissen und Nachbedingungen, welche auf Basis von Testbedingungen entwickelt wurden. [nach ISO 29119]

- Eindeutige Kennzeichnung
- Ausführungsvoraussetzungen (notwendige Vorbedingungen) (preconditions)
- Menge der Eingabewerte (input values)
- Menge der vorausgesagten Ergebnisse (expected results)
- Erwartete Nachbedingungen (postconditions)

Testdaten (test data)

Die Daten, die erzeugt oder ausgewählt werden, um für die Durchführung eines oder mehrerer Testfälle Vorbedingungen zu erfüllen und Eingaben für die Durchführung bereit zu stellen. [Nach ISO 29119]

Testorakel (test oracle)

Eine Informationsquelle zur Ermittlung vorausgesagter Ergebnisse, um sie mit den tatsächlichen Ergebnissen eines Systems unter Test zu vergleichen. [Nach Adrion]

Testrealisierung (test implementation)

1 von 3

"Jetzt machen wir alles für die Durchführung bereit"

- Erstellung und Vervollständigung der Testmittel
- Reihenfolge der Testfälle in Testabläufen zusammenstellen und priorisieren
- Erstellung automatisierter Testskripte
- Erstellen von Testsuiten aus den Testabläufen und automatisierten Testskripten (wenn vorhanden)
- Im Testausführungsplan die Testsuiten zur effizienten Testdurchführung anordnen

 Aufbau der Testumgebung (Testrahmen, Simulatoren usw.) und Verifizierung, dass alles korrekt aufgesetzt wurde

Certified Tester Foundation Level

© trendig technology services GmbH

7/

I. Grundlagen des Softwaretestens »4. Testprozess: Testaktivitäten und Aufgaben

Testrealisierung

2 von 3

- Vorbereitung von Testdaten
- Sicherstellen, dass sie ordnungsgemäß in die Testumgebung geladen sind
- Verifizierung der bidirektionale Verfolgbarkeit zwischen
 Testbasis ↔ Testbedingungen ↔ Testfällen ↔ Testabläufen ↔ Testsuiten
- Aufgaben des Testentwurfs und der Testrealisierung sind oft kombiniert
- Erfahrungsbasiertes Testen (exploratives Testen)
 Testentwurf, -realisierung und -durchführung finden oft in direkter Folge statt.
 Basierend auf Test-Chartas werden diese Tests sofort ausgeführt, nachdem sie entworfen und realisiert wurden

Begriffe zur Testrealisierung

3 von 3

 Testablaufspezifikation (test procedure specification) Die Spezifikation eines oder mehrerer Testabläufe. [nach ISO 29119] Auch bekannt als Testskript oder Testdrehbuch.

Die Testfälle werden in eine erforderliche sinnvolle Reihenfolge gebracht

- Testsuite (test suite) Eine Menge von Testfällen oder Testabläufen, welche in einem bestimmten Testzyklus ausgeführt werden sollen.
- Testausführungsplan (test execution schedule) Ein Zeitplan für die Ausführung von Testsuiten innerhalb eines Testzyklus.
- Testmittel (testware) Die Arbeitsergebnisse resp. Artefakte, die während des Testprozesses erstellt werden und dazu gebraucht werden, um die Tests zu planen, zu entwerfen, auszuführen, auszuwerten und darüber zu berichten. [ISO 29119] Dazu gehören: Dokumente, Skripte, Eingabewerte, erwartete Ergebnisse, Prozeduren zum Aufsetzen und Aufräumen von Testdaten, Dateien, Datenbanken, Umgebungen und weitere zusätzliche Software- und Dienstprogramme, die für das Testen verwendet werden [nach Fewster und Graham]

Certified Tester Foundation Level

© trendig technology services GmbH

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben

Testdurchführung (test execution)

Der Testausführungsplan bestimmt die Reihenfolge des Ablaufs der Testsuiten

WICHTIG ist die Protokollierung der IDs und Versionen

- o Der Testelemente resp. des Testobjekts
- Der Testwerkzeuge und der Testmittel

Ausführen der Tests (manuell / autom.)

 Vergleich der Ist-Ergebnisse mit den erwarteten Ergebnissen

Testdurchführung

2 von 3

Aufzeichnung der Ergebnisse der Testdurchführung (Testprotokoll) mit entsprechendem Status: z.B. bestanden / fehlgeschlagen / blockiert

Alle **Fehlerwirkungen / Abweichungen** werden protokolliert und **analysiert**, um den Grund des Problems zu lokalisieren (Code / Daten / ...)

Berichten über Fehlerzustände auf Basis der beobachteten Fehlerwirkung

Wiederholung von Testaktivitäten

- Durchführung eines korrigierten Tests
- o Fehlernachtests zur Prüfung der erfolgreichen Fehlerbehebung
- Regressionstests zur Sicherstellung der Altfunktionalität

Verifizierung und Aktualisierung der bidirektionalen Verfolgbarkeit

 \circ Testbasis \leftrightarrow Testbedingungen \leftrightarrow Testfällen \leftrightarrow Testabläufen \leftrightarrow **Testergebnissen**

Certified Tester Foundation Level

© trendig technology services GmbH

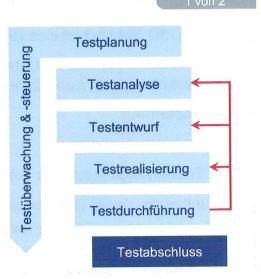
75

I. Grundlagen des Softwaretestens »
4. Testprozess: Testaktivitäten und Aufgaben

Begriffe zur Testdurchführung

3 von 3

- Testprotokoll (test log)
 Eine chronologische Aufzeichnung von Einzelheiten der Testausführung. [IEEE 829]
 (wer hat wann, was, wie, mit welchen Ergebnissen getestet)
- Überdeckung (coverage)
 Der Grad, ausgedrückt in Prozent, zu dem bestimmte Überdeckungselemente behandelt oder durch eine Testsuite ausgeführt wurden


- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben

Testabschluss (test completion)

Zeitpunkt für die Testabschlussaktivitäten

- o Projektmeilensteine (Freigabe eines Systems)
- Abschluss eines Testprojekts
- o Ende einer Projektiteration (agile)
- Abschluss einer Teststufe
- Abschluss eines Wartungsreleases
- Alle bekannten Fehlerberichte sollen geschlossen, auf ein späteres Release verschoben oder als Einschränkung akzeptiert worden sein
- Erstellen eines Testabschlussberichts (durch den TM) in Rücksprache mit den Stakeholdern

Certified Tester Foundation Level

© trendig technology services GmbH

80

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testaktivitäten und Aufgaben

Testabschluss

2 von

- Finalisierung und Archivierung von Testumgebung, Testdaten, Testinfrastruktur und anderer Testmittel (zur Wiederverwendbarkeit)
- Übergabe der Testmittel an das Wartungsteam, den Support / Kunden / Systemanwender, die einen Nutzen daraus ziehen
- Analyse der Erkenntnisse für notwendige Änderungen für zukünftige Iterationen, Produktreleases und Projekte
- Analyse und Dokumentation von "lessons learned" zur Verbesserung der Prozessreife (KVP)*
 - Wie spät gefundene oder unerwartete Fehlerhäufungen
 - Unrealistische Testschätzungen
 - Fehlertendenzen aus Ursache-Wirkungs-Analyse
 - o Zu späte Änderungsanträge

^{*} KVP = kontinuierlicher Verbesserungsprozess

Testarbeitsergebnisse (test deliverable)

1 von 5

- Die ISO 29119-3 ist eine Richtlinie für Testarbeitsergebnisse
- Die nachfolgenden Testarbeitsergebnisse k\u00f6nnen in Werkzeugen f\u00fcr Testmanagement und Defektmanagement erstellt und verwaltet werden

Testplanung

- Mastertestkonzept
- Testkonzept (eins oder mehrere z.B. je Qualitätsmerkmal oder Teststufe)
- Inhalt der dieser Arbeitsergebnisse sind
 - Informationen über die Testbasis
 - o Endekriterien (definition-of-done)
 - Bezug aus bidirektionale Verfolgbarkeitsmatrix

Certified Tester Foundation Level

© trendig technology services GmbH

00

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Testarbeitsergebnisse

Testarbeitsergebnisse

2 von 5

Testüberwachung und -steuerung

- Testberichte
- Testfortschrittsberichte (wiederholend, kontinuierlich / regelmäßig)
- Testabschlussberichte (bei Meilensteinen)

Inhalt dieser Arbeitsergebnisse sind

- Zielgruppenrelevante Details (Testfortschritt, Berichtszeitpunkt, Testdurchführungsergebnisse)
- Antworten auf Projektmanagementfragen (Aufgabenabschluss, Ressourcenzuordnung, Ressourcennutzung, Aufwand)

I. Grundlagen des Softwaretestens »

4. Testprozess: Testarbeitsergebnisse

Testarbeitsergebnisse

3 von

Testanalyse

- Priorisierte Testbedingungen (bidirektionale Verfolgbarkeit, Überdeckung)
- Test-Charta (exploratives Testen)
- Fehlerberichte zu Fehlerzuständen der Testbasis

Testentwurf

- Testfälle bzw. Sets von Testfällen z.B. als abstrakte Testfälle zur Wiederverwendbarkeit sowie deren bidirektionale Verfolgbarkeit zu den Testbedingungen (Überdeckung)
- Entwurf und Identifizierung von Testdaten, der Testumgebung, der Infrastruktur, der Testwerkzeuge
- Verfeinerung der Testbedingungen, die in der Testanalyse definiert sind

Certified Tester Foundation Level

© trendig technology services GmbH

9/

I. Grundlagen des Softwaretestens »

4. Testprozess: Testarbeitsergebnisse

Testarbeitsergebnisse

4 von !

Testrealisierung

- Einen oder mehrere Testabläufe
- Testsuiten
- Testausführungsplan (für den kommenden Testzyklus)
- Service-Virtualisierung und automatisierte Testskripte
- Fertig- / Erstellung / Verifizierung von Testdaten
- Fertig- / Erstellung / Verifizierung der Testumgebung
- Überführung abstrakter Testfälle in **konkreten Testfällen** (konkret erwartete Ergebnisse, konkrete Testdaten, Nutzung eines Testorakels)
- Beim explorativen Testen können die Arbeitsergebnisse erst während der Testdurchführung erstellt werden
- Verfeinerung der Testbedingungen, die in der Testanalyse definiert sind

Testarbeitsergebnisse

5 von 5

Testdurchführung

- Status der Testfälle / Testabläufe (z.B. ausführbar, bestanden, fehlgeschlagen, blockiert, geplant ausgelassen)
- Fehlerbericht (s. Kap. 5.6)
- Dokumentation über konkreten Einsatz von Testelementen, Testwerkzeugen, Testmitteln
- Status jedes Elementes der Testbasis aus bidirektionaler Verfolgbarkeit sichtbar
- Verifizierung der Überdeckungskriterien
- Nachvollziehbar für die Stakeholder

Testabschluss

 Testabschlussbericht(e), offene Punkte zur Verbesserung nachfolgender Projekte bzw. Iterationen (agile Retrospektive), Change Requests, Product-Backlog-Elemente, finalisierte Testmittel

Certified Tester Foundation Level

© trendig technology services GmbH

0.0

- I. Grundlagen des Softwaretestens »
- 4. Testprozess: Verfolgbarkeit

Verfolgbarkeit zwischen Testbasis und Testarbeitsergebnissen

- Grundsätzlich können Testarbeitsergebnisse und deren Bezeichnungen stark variieren
- Für eine effektive Testüberwachung und -steuerung ist eine lückenlose konsistente Verfolgbarkeit über den gesamten Testprozess elementar wichtig
- Zusätzlich zur Bewertung der Testüberdeckung gibt es weitere Vorteile
 - Unterstützung bei der Auswirkungsanalyse von Änderungen
 - Nachvollziehbarkeit vom Testergebnissen
 - IT-Governance-Kriterien nachweisen
 - Verständlichkeit von Testfortschrittsberichten (Status der Elemente der Testbasis)
 - o Transparenz technischer Aspekte für Stakeholder schaffen
 - o Basis zur Beurteilung von Produktqualität, Prozessfähigkeit, Projektfortschritt

Testmanagementtools unterstützen Testarbeitsergebnisse und Verfolgbarkeit

Zusammenfassung – Prozess

Der **Testprozess** kann in Phasen aufgeteilt werden:

- Testplanung: Festlegung des Aufgabenumfangs, Definition der Testziele und Testaktivitäten
- Testüberwachung und -steuerung: Fortlaufende Kontrolle des Testfortschritts, ggf. Korrekturmaßnahmen
- Testanalyse: Review der Testbasis
- Testentwurf: Spezifikation der Testfälle und Testdaten
- Testrealisierung: Endgültige Festlegung der Testfälle und Testdaten
- Testdurchführung: Ausführung der Testfälle und Ergebnisvergleich, Abweichungen verfolgen
- Testabschluss: Konsolidierung der Daten, KVP

Certified Tester Foundation Level

© trendig technology services GmbH

9.9

I. Grundlagen des Softwaretestens »Agenda

Kapitel I – Grundlagen des Softwaretestens

- I/1 Was ist Testen?
- I/2 Warum ist Testen notwendig?
- I/3 Sieben Grundsätze des Softwaretestens
- I/4 Testprozess
- I/5 Die Psychologie des Testens

Humanpsychologie und Testen

- Testen dient zum Identifizieren von Fehlerzuständen Anforderungsreviews, User-Story-Verfeinerungssession (refinement), Fehlerwirkungen bei dynamischen Tests
- Bestätigungsfehler (Element der Humanpsychologie)
 - Informationen widersprechen der aktuellen Überzeugung (ist doch richtig)
 - o Erschweren es Entwicklern, zu akzeptieren, dass der Code nicht korrekt ist
- Tester überbringen häufig schlechte Nachrichten, Überbringer schlechter Nachrichten werden oft dafür verantwortlich gemacht
- Testen wird als destruktive Aktivität gesehen

Gegenmaßnahme

- Informationen über Fehlerzustände und -wirkungen konstruktiv kommunizieren
- Abbau von Spannungen zwischen Testern und Analysten, Product Owner, Designern, Entwicklern

Certified Tester Foundation Level

© trendig technology services GmbH

- I. Grundlagen des Softwaretestens »
- Die Psychologie des Testens

Eigenschaften eines guten Testers und Testmanagers

Gute Kommunikation und soziale Kompetenzen

- Zusammenarbeit statt Streit (gemeinsames Ziel: gute Qualität des Systems)
- Nutzen des Testens aufzeigen und Informationen über Fehlerzustände sammeln
 - Arbeitsergebnisse und Fähigkeiten zu verbessern
 - Zeit und Geld sparen, um das allgemeine Risiko für die Produktqualität zu reduzieren
- o Sachliche, neutrale, faktenorientierte Darstellung der Testergebnisse
 - Objektive und tatsachenbasierte Fehlerberichte und Reviewbefunde
 - Keine Schuldzuweisungen, namentliche Beschuldigungen, persönliche Kritik
- Die Gefühle der anderen Person verstehen und respektieren
 - Perspektivwechsel vornehmen: "Wie würde ich mich an seiner Stelle fühlen?"
- Feedback einholen (wurde die Aussage verstanden?)

Klare Definition der Testziele (Team, Testmanagement, Stakeholder)

- o Menschen passen ihre Pläne und ihr Verhalten gerne den Zielen an
- Tester sollten auch an diesen Zielen festhalten

- I. Grundlagen des Softwaretestens »
- 5. Die Psychologie des Testens

Denkweisen von Entwicklern und Testern

1 von 2

Der Entwickler

- o setzt die Anforderungen um
- o entwickelt Strukturen
- o programmiert die Software

Für ihn ist das Schaffen eines Produktes der Erfolg

Entwickler sind konstruktiv!

Der Tester

- o plant seine Tests
- spezifiziert Testfälle
- o testet und will Fehler finden

Für ihn ist das Fehlerfinden der Erfolg

Tester sind destruktiv!

Falsch!

Testen ist konstruktiv. Das Ziel ist, ein qualitativ hochwertiges Endprodukt mit möglichst wenigen Fehlerzuständen und -wirkungen auszuliefern!

Durch das Testen ist der Fehler nicht in das Programm gekommen!

Certified Tester Foundation Level

© trendig technology services GmbH

0'

- I. Grundlagen des Softwaretestens »
- 5. Die Psychologie des Testens

Denkweisen von Entwicklern und Testern

2 von

- Denkweise eines Testers
 - Neugier und gute Beobachtungsgabe, diese wächst und reift mit steigender Erfahrung
 - Hineindenken in die Sichtweise des Kunden
 - Analysefähigkeit für IT-Struktur der Testobjekte
 - Entdeckung kleiner Details, an denen sich Fehlerwirkungen zeigen
 - o Professioneller Pessimismus, kritische Einstellung, Detailgenauigkeit
 - Motivation zu guter und positiver Kommunikation und Beziehungen
- Denkweise eines Entwicklers
 - Lösungsorientiert: stärker interessiert an Entwurf und Erstellung von Lösungen
 - Nachdenken, über Fehler in den Lösungen, wird vernachlässigt
 - o Bestätigungsfehler können es erschweren, Fehler in der eigenen Arbeit zu finden

Zusammenfassung

- Kein Mensch arbeitet fehlerfrei in jeder Entwicklung passieren Fehler
- Die Natur des Menschen erschwert es, eigenen Fehlern offen gegenüberzustehen - Fehlerblindheit, u. Ä.
- Entwickler und Tester es treffen "zwei Welten" aufeinander:
 - Entwickeln ist "konstruktiv" es wird etwas erschaffen!
 - Testen erscheint auf den ersten Blick "destruktiv" Fehler sind zu finden. Dieses Bild täuscht jedoch!
 - o Entwickeln und Testen sind zusammen betrachtet konstruktiv im Sinne einer besseren Qualität der Software

Certified Tester Foundation Level

© trendig technology services GmbH

I. Grundlagen des Softwaretestens » Schlüsselbegriffe

Schlüsselbegriffe

- Debugging
- Fehlerwirkung
- Fehlerzustand
- Fehlhandlung
- Grundursache
- Qualität
- Qualitätssicherung
- Verfolgbarkeit
- Testablauf
- Testabschluss
- Testanalyse
- Testausführungsplan
- Testbasis
- Testbedingung
- Testdurchführung

- Testdaten
- Testen
- Testentwurf
- Testfall
- Testmittel
- Testobiekt
- Testorakel
- Testplanung
- Testprozess
- Testrealisierung
- Teststeuerung
- Testsuite
- Testüberwachung
- Testziel
- Überdeckung
- Validierung
- Verifizierung

Certified Tester Foundation Level

© trendig technology services GmbH

II. Testen im Softwareentwicklungslebenszyklus » Agenda

Kapitel II – Testen im Softwareentwicklungslebenszyklus

- II/1 Softwareentwicklungslebenszyklusmodelle
- II/2 Teststufen
- II/3 Testarten
- II/4 Wartungstest

96

Lernziele für Testen im Softwareentwicklungslebenszyklus 1 von 2

2.1 Softwareentwicklungslebenszyklusmodelle

- Die Beziehungen zwischen Softwareentwicklungsaktivitäten und FL-2.1.1 (K2) Testaktivitäten im Softwareentwicklungslebenszyklus erklären können
- Gründe identifizieren können, warum FL-2.1.2 (K1) Softwareentwicklungslebenszyklusmodelle an den Kontext des Projekts und an die Produktmerkmale angepasst werden müssen

2.2 Teststufen

Die unterschiedlichen Teststufen unter den Aspekten der Testziele, FL-2.2.1 (K2) Testbasis, Testobjekte, typischen Fehlerzustände und Fehlerwirkungen sowie der Testvorgehensweise und Verantwortlichkeiten vergleichen können

Certified Tester Foundation Level

© trendig technology services GmbH

II. Testen im Softwareentwicklungslebenszyklus » Lernziele

können

Lernziele für Testen im Softwareentwicklungslebenszyklus 2 von 2

2.3 Testarten

Funktionale, nicht-funktionale und White-Box-Tests vergleichen können FL-2.3.1 (K2) Erkennen können, dass funktionale, nicht-funktionale und White-Box-FL-2.3.2 (K1) Tests auf jeder Teststufe eingesetzt werden können Den Zweck von Fehlernachtests und Regressionstests vergleichen FL-2.3.3 (K2)

2.4 Wartungstest

Auslöser für Wartungstests zusammenfassen können FL-2.4.1 (K2) Den Einsatz der Auswirkungsanalyse im Wartungstest beschreiben FL-2.4.2 (K2) können

II. Testen im Softwareentwicklungslebenszyklus » Agenda

Kapitel II – Testen im Softwareentwicklungslebenszyklus

- II/1 Softwareentwicklungslebenszyklusmodelle
- II/2 Teststufen
- II/3 Testarten
- II/4 Wartungstest

Certified Tester Foundation Level

© trendig technology services GmbH

100

- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

Allgemeines

Softwareentwicklungslebenszyklusmodelle

Beschrieben werden Aktivitäten, die in jeder Phase durchgeführt werden und wie diese Aktivitäten logisch und zeitlich zueinander stehen, um einen standardisierten Projektablauf zu ermöglichen

In jedem Softwareentwicklungslebenszyklusmodell gibt es mehrere Merkmale für gutes Testen:

- Jede Testaktivität bezieht sich auf eine Entwicklungsaktivität
- Jede Teststufe hat ihre stufenspezifischen Tests
- Testanalyse und Testentwurf beginnen während der Entwicklungsaktivität
- Tester beteiligen sich an Reviews von Arbeitsergebnissen schon bei ersten Entwürfen (Anforderungen, User Stories, Architekturdesign, etc.)

Verschiedene Modelle erfordern unterschiedliche Testansätze

Allgemeines

Kategorisierung von Softwareentwicklungslebenszyklusmodellen:

Sequentielle Modelle

- Wasserfallmodell
- Allgemeines V-Modell

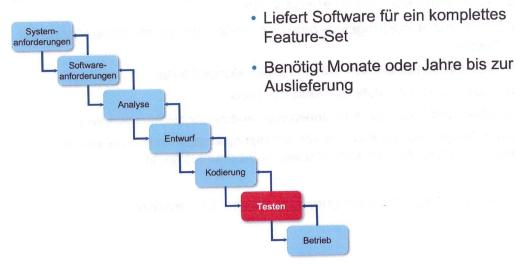
Iterative und inkrementelle Modelle

- Rational Unified Process (RUP)
- · Scrum
- Kanban
- Spiralmodell / Prototyping

Certified Tester Foundation Level

© trendig technology services GmbH

102


- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

Softwareentwicklung und Softwaretesten

Wasserfallmodell (Royce 1970)

Linearer, sequentieller Ablauf von Aktivitäten. Alle Entwicklungsaktivitäten werden nacheinander abgeschlossen, bevor mit dem Testen begonnen wird

Certified Tester Foundation Level

© trendig technology services GmbH

II. Testen im Softwareentwicklungslebenszyklus »

Softwareentwicklung und Softwaretesten

2 von 8

Allgemeines V-Modell (v-model)

- Ein sequentielles Entwicklungsmodell
 - o Integration den Testprozess in den Entwicklungsprozess (frühes Testen)
 - o Zu jeder Entwicklungsstufe korrespondiert eine Teststufe gegenüber
- Sequentielle Durchführung der Tests in einer Teststufe
- · Überlappungen sind zugelassen
- Liefert Software für ein komplettes Feature-Set
- Benötigt Monate oder Jahre bis zur Auslieferung

Certified Tester Foundation Level

© trendig technology services GmbH

10/

- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

Softwareentwicklung und Softwaretesten

3 von

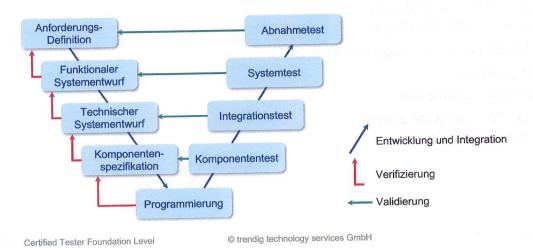
Vom allgemeinen V-Modell kann in der Praxis abgewichen werden, abhängig vom Projektvorgehen oder dem Produkt, mit mehr oder weniger Stufen

- Komponentenintegrationstests werden nach dem Komponententest durchgeführt
- Systemintegrationstests nach dem Systemtest

Entwicklungsdokumente, die während der Entwicklung entstehen, sind Basis für die Tests einer oder mehrerer Stufen

Standards für generische Arbeitspapiere stehen u.a. unter

- CMMI (Capability Maturity Model Integration)
- o ISO 12207 ("Software life cycle processes")


Verifizierung und Validierung werden während der Erstellung der Entwicklungsdokumente durchgeführt

Softwareentwicklung und Softwaretesten

4 von 8

- Verifizierung bedeutet, dass geprüft wird, ob die Vorgaben, die aus der Vorstufe übergeben wurden, korrekt umgesetzt worden sind
- Validierung bedeutet, dass die Software oder Komponente auf der jeweiligen Teststufe gegen Benutzeranforderungen und -bedarf geprüft wird

II. Testen im Softwareentwicklungslebenszyklus »

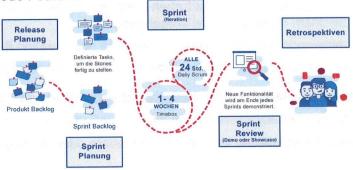
1. Softwareentwicklungslebenszyklusmodelle

Softwareentwicklung und Softwaretesten

5 von 8

106

- Inkrementelle Entwicklung
 - Anforderungsdefinition, Entwurf, Implementierung und Test werden in kleinere Schritte unterteilt, sodass sie inkrementell wachsen
 - Die Größe eines Inkrements wird durch die Wahl der Methode bestimmt
 - Ein Inkrement kann auch nur eine einzige Veränderung in einer GUI Maske oder Abfrageoption sein
- Iterative Entwicklung
 - o Eine Reihe von Zyklen für eine Gruppe von Features eine Iteration
 - o Oft mit festgelegtem Zeitrahmen für Spezifizierung, Entwurf, Implementierung und Test
 - Eine Iteration kann Änderungen von Leistungsmerkmalen früherer Iterationen und Erweiterungen oder Änderungen am Projektumfang umfassen
 - o Jede Iteration liefert eine lauffähige Software (wachsende Teilmenge des Gesamten)
 - o Am Ende wird die endgültige Software geliefert oder die Entwicklung ist beendet
 - o Beispiele: RUP, Scrum, Kanban, Spiralmodell / Prototyping


- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

Softwareentwicklung und Softwaretesten

6 von

- Rational Unified Process (RUP)
 - o Jede Iteration ist relativ lang (zwei bis drei Monate)
 - o Die Inkremente der Features sind entsprechend groß (zwei bis drei Gruppen)
- Scrum
 - o Jede Iteration ist relativ kurz (Stunden, Tage, wenige Wochen)
 - Die Inkremente der Features sind relativ klein. Sie umfassen Verbesserungen oder zwei bis drei neue Features

Certified Tester Foundation Level

© trendig technology services GmbH

108

- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

*WiP=Work in Progress

Softwareentwicklung und Softwaretesten

7 von

- Kanban
 - o Die Länge einer Iteration wird nicht zwangsläufig vorgegeben (mit oder ohne WiP*)
 - Der Umfang variiert von einer Verbesserung, einem Feature bis hin zu einer Gruppe von Features

Spiralmodell / Prototyping

- Schaffen von experimentellen Inkrementen
- o Diese werden in folgenden Iterationen stark überarbeitet oder aufgegeben

Softwareentwicklung und Softwaretesten

- Oftmals gemeinsamer Einsatz von iterativen und inkrementellen Entwicklungsmodellen
 - Jedes Feature sollte bis zur Auslieferung auf mehreren Teststufen getestet werden
 - Überlappungen in der Entwicklung und iterative Teststufen sind üblich
 - o Kontinuierliche Auslieferung (continuous delivery) oder kontinuierliche Bereitstellung (continuous deployment) kommt oft zum Einsatz
 - o Einsatz automatisierter Tests auf allen Teststufen als Teil von Delivery-Pipelines
 - o Selbstorganisierten Teams haben durch die Zusammenarbeit von Testern und Entwicklern oft eine eigene Vorgehensweise
 - Endanwender können Feature für Feature und Iteration für Iteration freigeben
 - o Regressionstests wachsen in ihrer Bedeutung von Iteration zu Iteration
- Sequentielle Modelle vs. iterativ-inkrementelle Modelle
 - Nutzbare Software schon nach wenigen Wochen oder Monaten
 - o Gesamtfertigstellung kann trotzdem Monate oder Jahre brauchen

Certified Tester Foundation Level

© trendig technology services GmbH

- II. Testen im Softwareentwicklungslebenszyklus »
- Softwareentwicklungslebenszyklusmodelle

Softwareentwicklungslebenszyklusmodelle im Kontext 1 von 3

Auswahl und Anpassung eines Softwareentwicklungslebenszyklusmodells

- Auswahl und Anpassung erfolgt im Kontext von Projekt- und Produktmerkmalen
- Basis dafür können sein
 - Projektziel, identifizierte Projekt- und Produktrisiken
 - Frage nach dem Produkt, welches entwickelt werden soll
 - Geschäftsprioritäten (time-to-market)
- o Unterschiede dafür können sein
 - Kleines internes Verwaltungssystem
 - Sicherheitskritisches System wie Bremssteuerung im Fahrzeug
 - Organisatorische und kulturelle Probleme

II. Testen im Softwareentwicklungslebenszyklus »

Softwareentwicklungslebenszyklusmodelle im Kontext

2 von 3

Begriff:

Kommerzielle Standardsoftware (commercial off-the-shelf) (COTS)

Ein Softwareprodukt, das für den allgemeinen Markt entwickelt wurde, d.h. für eine große Anzahl von Kunden, und dass dieses in identischer Form an viele Kunden ausgeliefert wird.

- o Teststufen und Testaktivitäten können kombiniert oder neu definiert werden
- o Bei der Integration von Standardsoftware kann der Kunde z.B. fordern
 - Interoperabilitätstest auf Systemintegrationsstufe durchzuführen
 - Funktionale und nicht-funktionale Tests beim Abnahmetest

Certified Tester Foundation Level

© trendig technology services GmbH

112

- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

Softwareentwicklungslebenszyklusmodelle im Kontext

3 von

- Kombinationen von Softwareentwicklungsmodellen sind möglich Beispiele
 - V-Modell für ein Backend-System (Entwicklung und Tests) beim Integrationstest
 - o Agile Modelle für Entwicklung und Test der Frontend-Benutzerschnittstelle (UI)
 - o Prototyping in der Anfangsphase, dann übergeleitet in ein inkrementelles Modell
- Internet der Dinge (Internet of Things, IoT) (versch. Geräte, Dienste, ..)
 - o Jedes Objekt in einem eigenständigem Modell
 - Herausforderung für die Entwicklung von Versionen (Aktualisierung im laufenden Betrieb, Außerbetriebnahme)

Softwareentwicklungslebenszyklusmodelle anpassen

Gründe für die Anpassung der Softwareentwicklungsmodelle an Projekt- oder Produktanforderungen können sein

- Unterschiedliche Produktrisiken der Systeme (komplexe, einfache, sicherheitskritische Projekte)
- Viele unterschiedliche Organisationseinheiten sind an der Entwicklung beteiligt und müssen zusammengeführt werden (Mischung aus sequenziellen und agilen Methoden)
- Marktanforderungen verlangen schnelle Lieferungen (Teststufen oder Testarten werden zusammengefasst)
- Unterschiedliche Mitarbeitererfahrungen oder -fähigkeiten (Scrum, Kanban, V-Modell, Wasserfall)

Certified Tester Foundation Level

© trendig technology services GmbH

114

- II. Testen im Softwareentwicklungslebenszyklus »
- 1. Softwareentwicklungslebenszyklusmodelle

Zusammenfassung

- Softwareentwicklungslebenszyklusmodelle werden zur Softwareentwicklung genutzt und schließen Testaktivitäten mit ein. Bei Bedarf werden diese Modelle an Projekt- und Produktanforderungen angepasst
- Das bekannteste sequentielle Entwicklungsmodell ist das V-Modell, welches Entwicklungs- und Teststufen auf zwei Ästen darstellt, die einander komplementär gegenüber stehen
- Wichtige iterativ-inkrementelle Entwicklungsmodelle sind RUP und agile Modelle
- Verifizierung: Prüfung, ob die Ergebnisse einer Entwicklungsphase die Vorgaben der Phaseneingangsdokumente erfüllen. Mathematisch formaler Beweis der Korrektheit eines Programms
- Validierung: Prüfung, ob ein Entwicklungsergebnis die individuellen Anforderungen bezüglich einer speziellen beabsichtigten Nutzung erfüllt

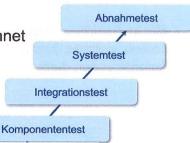
II. Testen im Softwareentwicklungslebenszyklus » Agenda

Kapitel II – Testen im Softwarelebenszyklus

- II/1 Softwareentwicklungslebenszyklusmodelle
- II/2 Teststufen
- II/3 Testarten
- II/4 Wartungstests

Certified Tester Foundation Level

© trendig technology services GmbH


116

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Komponententest

Teststufen

- Gruppen von Testaktivitäten, die gemeinsam organisiert und verwaltet werden
- Jede Teststufe ist eine eigene Instanz des Testprozesses mit entsprechenden Aktivitäten
- Umfassen Testaktivitäten entsprechend einer festgelegten Entwicklungsstufe
- Stehen mit anderen Aktivitäten innerhalb des SW-Entwicklungslebenszyklusses in Verbindung
- Benötigen eine passende Testumgebung
- Werden durch folgende Eigenschaften gekennzeichnet
 - Spezifische Ziele
 - o Testbasis, daraus werden die Testfälle abgeleitet
 - Testobjekt (was getestet wird)
 - Typische Fehlerzustände und Fehlerwirkungen
 - Spezifische Ansätze und Verantwortlichkeiten

II. Testen im Softwareentwicklungslebenszyklus »

2. Teststufen

Begriffe zu Teststufen

1 von 2

- Teststufe (test level)
 Eine spezifische Instanziierung eines Testprozesses.
- Komponententest (component testing)
 Testen einer einzelnen Hardware- oder Softwarekomponente.
- Integrationstest (integration testing)
 Testen mit dem Ziel, Fehlerzustände in den Schnittstellen und im Zusammenspiel zwischen integrierten Komponenten aufzudecken.
 Siehe auch Komponentenintegrationstest, Systemintegrationstest
- Systemtest (system testing)
 Testen eines integrierten Systems, um sicherzustellen, dass es spezifizierte
 Anforderungen erfüllt. [Hetzel]
- Abnahmetest (acceptance testing)
 Formales Testen hinsichtlich der Benutzeranforderungen und -bedürfnisse bzw. der Geschäftsprozesse. Es wird durchgeführt, um einem Auftraggeber oder einer bevollmächtigten Instanz die Entscheidung auf der Basis der Abnahmekriterien zu ermöglichen, ob ein System anzunehmen ist oder nicht. [IEEE 610]

Certified Tester Foundation Level

© trendig technology services GmbH

118

II. Testen im Softwareentwicklungslebenszyklus »

Begriffe zu Teststufen

2 von 2

- Testumgebung (test environment)
 Eine Umgebung, die benötigt wird, um Tests auszuführen. Sie umfasst Hardware,
 Instrumentierung, Simulatoren, Softwarewerkzeuge und andere unterstützende
 Hilfsmittel. [IEEE 610]
- Funktionales Testen (functional testing)
 Testen, welches durchgeführt wird, um die Erfüllung der funktionalen Anforderungen durch eine Komponente oder ein System zu bewerten.
- Nicht-funktionales Testen (non-functional testing)
 Testen, welches durchgeführt wird, um die Erfüllung der nicht-funktionalen
 Anforderungen durch eine Komponente oder ein System zu bewerten.

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Komponententest

Komponententest (Unit-, Modultest)

Test der Komponenten auf innere Verarbeitung

- Ziele
 - Risikoreduktion
 - Verifizierung gegen Entwicklungsspezifikation (funktionale und nicht-funktionale Verhaltensweisen)
 - o Vertrauen in die Qualität der Komponente schaffen
 - o Weitergabe von Fehlerzuständen in die höheren Teststufen verhindern
 - Automatisierte Komponententests (agile Entwicklung), bauen Vertrauen auf, dass bei Änderungen keine bestehenden Komponenten beschädigt wurden Abnahmetest
- Testbasis
 - Feinentwurf
 - o Code
 - Datenmodelle
 - Komponentenspezifikationen
- Testobjekte
 - Komponenten,
 Units oder Modelle
 - Code, Datenstrukturen
 - Klassen
 - Datenbankmodule

Systemtest /
Integrationstest

Komponententest

Programmierung

Certified Tester Foundation Level

© trendig technology services GmbH

120

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Komponententest

Komponententest

- Ausschließlicher Test einzelner Komponenten
 - Eine Komponente ist die kleinste Einheit, für die es eine separate Spezifikation gibt. Eine Komponente kann dabei aus mehreren kleinsten Bausteinen bestehen
- · Jede Komponente wird isoliert vom Rest des Systems getestet
 - Es soll nach internen Fehlerzuständen gesucht werden
 - o Außer Betracht bleiben Wechselwirkungen zu anderen Programmkomponenten
- Häufige Fehlerzustände und Fehlerwirkungen
 - o Nicht korrekte Funktionalität gegenüber der Entwurfsspezifikation
 - Datenflussprobleme
 - Nicht korrekter Code und/oder nicht korrekte Logik

Fehlerzustände

- o Behebung sofort, i.d.R. ohne formales Fehlermanagement durch Entwickler
- Grundursachenanalyse und Prozessverbesserung allerdings ohne Fehlerbericht schwer durchführbar

Komponententest – Funktionale und nicht-funktionale Tests

- Test der Funktionalität
 - o Der Komponententest soll die Funktionalität der Komponente sicherstellen
 - Werden alle Funktionen korrekt ausgeführt?
 - Sind die Berechnungen korrekt?
 - Werden die Spezifikationen vollständig erfüllt?
- Test der Effizienz
 - o Test auf die Verwendung von Ressourcen wie Speicherengpässe
- · Test der Robustheit
 - o Robustheit bezeichnet die Unanfälligkeit einer Software bei Fehleingaben etc.
 - Robustheit wird anhand von Negativtests geprüft, der bewussten Eingabe von falschen oder unzulässigen Werten, die vom System abgefangen werden müssen
- Struktureller Test
 - Strukturelle Tests wie Anweisungs- und/oder Entscheidungsüberdeckung

Certified Tester Foundation Level

© trendig technology services GmbH

400

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Komponententest

Komponententest – Was und wie wird getestet?

- Testobjekte sind programmierte einzelne Komponenten
 - o Diese Testobjekte sind oftmals nicht eigenständig ausführbare Programmteile
- Treiber, Platzhalter, Mock-Objekte, Service-Virtualisierung, Rahmen und Simulatoren werden benötigt je nach SW-Entwicklungslebenszyklus-Modell
 - o Treiber bildet bzw. nutzt die spezifizierte Schnittstelle zum Testobjekt (Komponente)
 - Testtreiber ermöglichen die Ausführung der Komponente in der Software-Umgebung
 - Testtreiber simulieren Eingaben, z. B. vom User
 - Platzhalter nehmen Ausgabewerte entgegen
 - o Treiber stellt i. d. R. Software-Ablauf-Umgebung zur Verfügung

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Komponententest

Komponententest – Aufrufhierarchie

- · Treiber können selbst programmiert werden, wenn
 - Programmierkenntnisse vorhanden sind
 - Programmcode offen liegt
 - o Programmierwerkzeuge zur Verfügung stehen
- Platzhalter oder Stubs werden benötigt, um
 - Noch nicht realisierte Komponenten für die Durchführung von Tests zu ersetzen bzw. zu simulieren

Entwicklertests

- o Der Entwickler testet seinen Code
- o Er findet und behebt Fehlerzustände
- Wechselt zwischen dem Schreiben der Tests und der Ausführung
- Im agilen Umfeld k\u00f6nnen die automatisierten Tests schon vor dem Schreiben des Codes erstellt werden (TDD)

Certified Tester Foundation Level

© trendig technology services GmbH

12

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Komponententest

Testgetriebene Entwicklung oder Test-First-Ansatz

(TDD – test driven development)

- Testfälle dominieren Entwicklungszyklen
 - Vor Entwicklungsbeginn werden die Testfälle vorbereitet
 - Testfälle werden für die Durchführung automatisiert (Tool-Einsatz notwendig!)
- Entwicklung gegen die Testfälle
 - Die Komponente wird in einer ersten Version entwickelt
 - Automatisierte Durchführung der Testfälle
 - Behebung der aufgetretenen Abweichungen durch Entwicklung einer Folgeversion
 - o Erneute Durchführung der Testfälle, bis keine Abweichungen mehr auftreten
 - o Hoch iterativer Ansatz

Refactoring

 Bezeichnet in der Software-Entwicklung die manuelle oder automatisierte Strukturverbesserung von Quelltexten unter Beibehaltung des beobachtbaren Programmverhaltens

Zusammenfassung Komponententest

- Komponenten sind die kleinsten spezifizierten Einheiten der Software
- Modul-, Unit-, Klassen- und Entwicklertest werden synonym für Komponententest verwendet
- Aufrufende Funktionen werden durch Treiber (driver), aufgerufene Funktionen durch Platzhalter (stubs) ersetzt, Umgebungen werden durch Simulatoren abgebildet
- Der Komponententest kann neben funktionalen auch nicht-funktionale Qualitätsmerkmale (Robustheit / Speicherengpässe) messen

Certified Tester Foundation Level

© trendig technology services GmbH

126

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Integrationstest

1 von 2

Test der Interaktion zwischen Komponenten (und Systemen)

- Ziele
 - Risikoreduktion
 - Verifizierung gegen Entwurf und Spezifikation (funktionale und nicht-funktionale Verhaltensweisen) der Schnittstellen
 - Vertrauen in die Qualität der Schnittstellen schaffen
 - Fehlerzustände finden
 - Weitergabe von Fehlerzuständen in die h\u00f6heren Teststufen verhindern
 - Automatisierte Integrationstests (insbesondere bei agiler Entwicklung), liefern Vertrauen, dass bei Änderungen keine bestehenden Komponenten oder Systeme beschädigt wurden

Abnahmetest
Systemtest
Integrationstest
Komponententest
Programmierung

127

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Integrationstest

2 von

- Testbasis
 - o Software- und Systementwurf
 - Sequenzdiagramme
 - o Spezifikationen von Schnittstellen, Protokollen
 - Anwendungsfälle, Workflows
 - Architektur auf Komponenten- oder Systemebene
 - Externe Schnittstellendefinition

- Testobjekte
 - Subsysteme
 - Datenbanken
 - o Infrastruktur
 - Schnittstellen (interfaces)
 - o APIs
 - Microservices

Certified Tester Foundation Level

© trendig technology services GmbH

128

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Begriffe zu Integrationstest

- Komponenten-Integrationstest (component integration testing)
 Testen wird durchgeführt mit dem Ziel, Fehlerzustände in den Schnittstellen und dem Zusammenwirken der integrierten Komponenten aufzudecken.
 - Interaktionen und Schnittstellen zwischen Komponenten
 - Durchführung nach erfolgreichem Komponententest, meist automatisiert
 - o Oft Teil des kontinuierlichen Integrationsprozesses (continous integration)
- System-Integrationstest (system integration testing)
 Testen der Verbindung und Interaktion von Systemen
 - o Interaktionen und Schnittstellen zwischen Systemen, Paketen, Microservices
 - Überdeckung von Interaktionen und Schnittstellen zu externen Organisationen Herausforderung, weil die Schnittstellen in anderen Zuständigkeitsbereichen liegen
 - o Durchführung nach oder parallel zu dem Systemtest

Integrationstest - Was und wie wird getestet?

- Getestet wird ein (Teil-) System, das sich aus Einzelkomponenten zusammensetzt
 - Jede der Komponenten hat eine Schnittstelle, die nach außen und / oder zu einer anderen Komponente des (Teil-) Systems führt
- Es werden Treiber (siehe Komponententest) benötigt, die
 - o Eingaben und Ausgaben für das (Teil-) System ermöglichen bzw. produzieren
 - o Daten protokollieren
- (Test-)Monitore, die mit der Aufzeichnung von Daten eine Kontrolle der Tests ermöglichen, können sinnvoll eingesetzt werden
- Platzhalter ersetzen fehlende Komponenten
 - Funktionen von Komponenten, die noch nicht integriert wurden, werden über speziell programmierte Platzhalter eingefügt
 - Platzhalter übernehmen die elementaren Aufgaben fehlender Komponenten

Certified Tester Foundation Level

© trendig technology services GmbH

130

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Integrationstest - Typische Fehlerzustände und Fehlerwirkungen

- Falsche oder fehlende Daten, falsche Datenverschlüsselung
- Falsche Reihenfolge, fehlerhafter zeitlicher Ablauf von Schnittstellenaufrufen
- Schnittstellenfehlanpassung
- Fehlerwirkungen in der Kommunikation zwischen Komponenten / Systemen
- Nicht behandelte oder nicht korrekt behobene Fehlerwirkungen in der Kommunikation zwischen Komponenten / Systemen
- Annahmen über Bedeutung, Einheiten oder Grenzen der Daten differieren zwischen den Komponenten / Systemen
- Inkonsistente Nachrichtenstrukturen zwischen den Systemen
- Fehlende Konformität mit erforderlichen Richtlinien zur Informationssicherheit

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Integrationstest - Verantwortlichkeiten

- Komponenten-Integrationstest liegen meist beim Entwickler
- System-Integrationstests liegen meist beim Tester
- Tester im System-Integrationstest sollten die Systemarchitektur verstehen und an der Planung der Integrationsstrategie beteiligt sein

Certified Tester Foundation Level

© trendig technology services GmbH

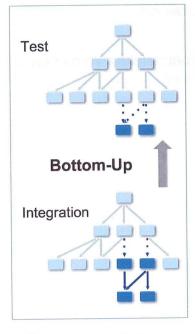
132

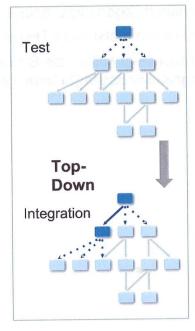
- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

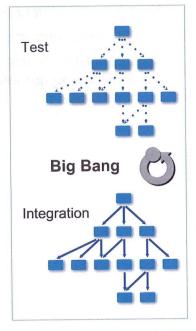
Integrationsstrategien

1 von 3

Integrationsstrategien müssen auf die Entwicklung abgestimmt sein


- Planung schon vor der Entwicklung
- Reihenfolge der Entwicklung von Komponenten und Systemen auf effektives Testen abstellen!
- Inkrementeller Ansatz vereinfacht die Isolation von Fehlerzuständen
- Systematische Strategien basieren auf
 - o Der Systemarchitektur (Top-Down, Bottom-Up)
 - Funktionalen Aufgaben, der Reihenfolge von Transaktionen oder ähnlichen Aspekten (geschäftsprozessorientiert)
- Big Bang Strategie: Integration in einem Schritt erschwert die Isolation von Fehlerzuständen
- Kontinuierliche Integration (continuous integration) auf Komponentenbasis
- Risikoanalyse der komplexesten Schnittstellen unterstützt einen zielgerichteten Einsatz von Integrationstests


- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest



Integrationsstrategien

2 von 3

Certified Tester Foundation Level

© trendig technology services GmbH

134

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Integrationsstrategien

3 von

Kontinuierliche Integration (continuous integration)

- Je kleiner der Umfang der Integration desto einfacher die Isolation von Fehlern
- D.h. Risikoreduktion sowie niedrigerer Zeitaufwand für Fehlerbehebung
- Kontinuierliche Integration sollte auf Komponentenbasis implementiert sein (funktionale Integration)
- Unterstützung durch automatisierte Regressionstests auf mehreren Teststufen
- Einbettung in automatisierte Build-Pipelines

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Integrationstest

Zusammenfassung Integrationstest

- Das Zusammenfügen von Komponentengruppen wird Integration genannt
- Der Integrationstest prüft deren Zusammenwirken gegen die Spezifikation der Schnittstellen
- Verbreitete Integrations-Strategien sind Bottom-Up, Top-Down, Big Bang, geschäftsprozessorientiert oder Kontinuierliche Integration
- Auch der Test der Integration bereits integrierter Teilsysteme fällt unter den Integrationstest

Certified Tester Foundation Level

© trendig technology services GmbH

136

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Systemtest

Systemtest

1 von

Prüfung des integrierten **Gesamtsystems** auf Einhaltung der spezifischen **Anforderungen** und auf das Verhalten des Systems, meist durch **unabhängige** Tester nach Vorgaben der Spezifikation – mit folgenden **Zielen**:

- Risikoreduktion
- Vertrauen in die Qualität des Systems
- Verifizierung, ob die funktionalen und nicht-funktionalen Verhaltensweisen des Systems mit der Spezifikation übereinstimmen
- o Validierung, ob das System vollständig ist und funktioniert wie erwartet
- Finden von Fehlerzuständen und verhindern von Mitführung von Fehlerzuständen in die nächste Stufe

 Abnahmetest
- Verifizierung der Datenqualität
- o Einsatz automatisierter Systemregressionstests zur Sicherheit

 Lieferung von Informationen an Stakeholder z.B. für Freigabeentscheidungen

 Nachweis der Erfüllung von Standards, regulatorischen oder rechtlichen Anforderungen Systemtest
Integrationstest
Komponententest
Programmierung

137

Systemtest

2 von 3

Testbasis

- System- und Software-Anforderungsspezifikation funktional und nicht-funktional
- Risikoanalyseberichte
- Anwendungsfälle
- o Epics und User Stories
- Modelle des Systemverhaltens
- Zustandsdiagramme
- System- und Benutzeranleitungen

Testobjekte

- Anwendungen
- Hardware / Softwaresysteme
- o Betriebssysteme
- Systeme unter Test (SUT)
- Systemkonfiguration
- Konfigurationsdaten

Certified Tester Foundation Level

© trendig technology services GmbH

138

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Systemtest

Systemtest

3 von

Typische Fehlerzustände und Fehlerwirkungen

- Falsche Berechnungen
 - Falsches / unerwartetes Systemverhalten (funktional und nicht-funktional)
 - Innerhalb des Systems falsche Kontroll- und / oder Datenflüsse
 - o Versagen bei der korrekten / vollständigen Ausführung der End-to-End-Aufgaben
 - o In der Produktivumgebung ordnungsgemäße Nutzung des Systems versagt
 - o System- und Benutzeranleitungen System funktioniert nicht wie beschrieben

Spezifische Ansätze und Verantwortlichkeiten

- Konzentration auf das allgemeine End-to-End-Verhalten des ganzen Systems
- o Funktionale und nicht-funktionale Aspekte stehen im Vordergrund
- Einsatz der am besten geeigneten Testverfahren zum zu testenden Aspekt (Entscheidungstabelle für funktionales Verhalten der Geschäftsregeln)
- o Unabhängige Tester zur Vermeidung "falsch-positiver" / "falsch-negativer" Ergebnisse
- Frühes Einbinden der Tester in statische Testaktivitäten zur Vorbeugung

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Systemtest

Systemtest - Softwarequalität

- Der Systemtest unterscheidet die Anforderungen entsprechend der Softwarequalität (ISO 25010) in
- Funktionale Anforderungen
 - Funktionalität
- Nicht-funktionale Anforderungen
 - Zuverlässigkeit
 - Gebrauchstauglichkeit
 - Effizienz
 - Wartbarkeit
 - Übertragbarkeit
 - o (IT-)Sicherheit
 - Kompatibilität

Certified Tester Foundation Level

© trendig technology services GmbH

4.40

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Systemtest

Systemtest - Funktionale Anforderungen

Es werden drei Ansätze zum Test funktionaler Anforderungen unterschieden

- Geschäftsprozessbasierter Test
 - o Einzelne Geschäftsprozesse dienen als Grundlage für die Ableitung von Testfällen
 - Eine Rangfolge der Prozesse kann in die Priorisierung der Testfälle übernommen werden
- Anwendungsfallbasierter Test
 - o Die Testfälle werden aus Sequenzen erwarteter bzw. sinnvoller Nutzung abgeleitet
 - Werden bestimmte Anwendungsfälle häufiger ausgeführt, erhalten sie im Test höhere Priorität
- Anforderungsbasierter Test (Bausteine)
 - Die Testfälle werden aus der Anforderungsdefinition abgeleitet
 - o Je nach Anforderung variiert die Anzahl der Testfälle

Systemtest - Nicht-funktionale Anforderungen

Die **Einhaltung** dieser Anforderungen (Zuverlässigkeit, Benutzbarkeit, Effizienz, Wartbarkeit, Übertragbarkeit, Sicherheit, Kompatibilität) ist genauso wichtig, aber **schwerer zu testen**, da diese

- a) oftmals gar nicht oder unvollständig spezifiziert sind
- b) schlecht zu quantifizieren sind

Der Anforderungsdefinition ist oft nicht klar zu entnehmen "wie gut" etwas funktionieren soll

 Häufig vage Definitionen: z. B. "problemlos zu bedienen", "übersichtliche Oberfläche", etc., werden vorausgesetzt daher nicht definiert

Eine **Quantifizierung** bei nicht-funktionalen Anforderungen mit Hilfe von Metriken ist teilweise **problematisch**, z. B. wegen der **Subjektivität** bei der Bewertung von Kriterien durch den Menschen

Certified Tester Foundation Level

© trendig technology services GmbH

142

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Systemtest

Zusammenfassung Systemtest

- Gesamtsystem wird mit funktionalen und nicht-funktionalen Tests geprüft
- Der funktionale Systemtest hat zum Ziel, die Konformität des entwickelten Systems mit dem funktionalen Systementwurf nachzuweisen (Validierung)
- Der nicht-funktionale Systemtest prüft Zuverlässigkeit, Gebrauchstauglichkeit, Effizienz, Wartbarkeit, Übertragbarkeit, (IT-)Sicherheit und Kompatibilität
- Nicht-funktionale Qualitätsmerkmale sind oft implizit in den Anforderungen enthalten. Das macht eine Validierung schwierig
- Hierfür werden oft unabhängige Testteams eingesetzt

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Abnahmetest

Abnahmetest

1 von 3

Test des Verhaltens und der Fähigkeiten des Systems bzw. Produkts

- Ziele
 - Vertrauen des Kunden in die Qualit\u00e4t des Systems als Ganzes
 - Validieren, ob das System vollständig ist und wie erwartet funktioniert
 - o Funktionale und nicht-funktionale Verhaltensweisen gemäß Spezifikation verifizieren
- Weitere Ziele des Abnahmetests
 - Informationen sammeln, ob das System geeignet und bereit für den Einsatz durch den Anwender (User) ist
 - Fehlerzustände finden (nicht Ziel des Abnahmetestes! Projektrisiko!)
 - Nachweis der Erfüllung von Standards, rechtlichen oder regulatorischen Anforderungen
- Ausprägungen des Abnahmetests
 - o Benutzer-Abnahmetest, Betrieblicher Abnahmetest
 - o Vertraglicher Abnahmetest, Alpha- und Beta-Test

Certified Tester Foundation Level

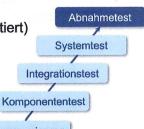
© trendig technology services GmbH

Systemtest
Integrationstest
Komponententest
Programmierung

Abnahmetest

14/

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Abnahmetest


Abnahmetest

2 von 3

- Testbasis
 - o Benutzer- / Fachanforderungen
 - Systemanforderungen
 - o Anwendungsfälle / Use Cases
 - User Stories
 - o Geschäftsprozesse
 - o Risikoanalyseberichte
 - System- / Benutzerdokumentation
 - Installationsverfahren
 - Vorschriften, Standards, Verträge

Testobjekte

- System unter Test (SUT)
- Geschäftsprozesse im vollintegrierten System
- o Betriebs- und Wartungsprozesse
- Systemkonfigurationen
- Konfigurationsdaten
- Formulare und Auswertungen / Berichte
- Produktionsdaten (bestehend / konvertiert)

Programmierung

Abnahmetest

3 von 3

- (zusätzliche) Testbasis für betrieblichen Abnahmetest
 - Sicherungs- und Wiederherstellungserfahren
 - o Disaster-Recovery-Verfahren
 - Nicht-funktionale Anforderungen, Performance
 - o Betriebsdokumentation
 - Anweisungen zur Bereitstellung und Installation
 - Datenbankpakete
 - Informationssicherheit, Vorschriften, Standards, Daten- und Zugriffssicherheit
- Typische Fehlerzustände
 - Fach- und Benutzeranforderungen an Systemworkflow nicht erfüllt
 - Geschäftsregeln werden nicht korrekt eingehalten
 - Vertragliche, regulatorische Anforderungen werden nicht erfüllt
 - Nicht-funktionale Fehlerwirkungen (Sicherheitsschwachstellen, Performance, Lasttest, nicht alle Plattformen unterstützt) vorhanden

Certified Tester Foundation Level

© trendig technology services GmbH

146

II. Testen im Softwareentwicklungslebenszyklus »

2. Teststufen: Abnahmetest

Begriffe zum Abnahmetest

1 von 2

- Alpha-Test (alpha testing)
 Testen in einer Simulations- oder Nutzungsumgebung beim Hersteller, welches durch Rollen außerhalb der Herstellerorganisation durchgeführt wird.
- Beta-Test (beta testing)
 Testen in einer (Hersteller-) externen Simulations- oder Nutzungsumgebung, welches durch Rollen außerhalb der Herstellerorganisation durchgeführt wird.
- Benutzer-Abnahmetest (user acceptance testing)
 Abnahmetest, der durch vorgesehene Benutzer in einer echten oder simulierten betrieblichen Umgebung durchgeführt wird, mit dem Fokus ihren Bedarf, Anforderungen und Geschäftsprozessen zu prüfen.

II. Testen im Softwareentwicklungslebenszyklus »

2. Teststufen: Abnahmetest

Begriffe zum Abnahmetest

2 von 2

- Betrieblicher Abnahmetest (operational acceptance testing)
 Ein Betriebstest innerhalb des Abnahmetests, üblicherweise in einer (simulierten)
 Produktionsumgebung durch den Betreiber und / oder Administrator durchgeführt, mit Schwerpunkt bei den operationalen Aspekten, z.B. Wiederherstellbarkeit,
 Ressourcenverwendung, Installierbarkeit und technische Kompatibilität
- Regulatorischer Abnahmetest (regulatory testing)
 Konformitätstest (compliancy testing)
 Abnahmetest mit dem Ziel, zu verifizieren, ob ein System zu relevanten Gesetzen,
 Richtlinien und Vorschriften konform ist.

Certified Tester Foundation Level

© trendig technology services GmbH

148

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Abnahmetest

Spezifische Ansätze und Verantwortlichkeiten

Der Abnahmetest erfolgt nicht unbedingt als letzte Teststufe

- Bei Standardsoftware kann der Abnahmetest zum Zeitpunkt der Installation oder Integration stattfinden
- Der Abnahmetest einer neuen funktionalen Erweiterung kann vor dem Systemtest erfolgen

Iterative Entwicklung kennen verschiedene Formen der Abnahmetests

- · Während oder am Ende einer Iteration oder einer Serie von Iterationen
- Verifizierung eines neuen Features in Bezug auf seine Abnahmekriterien
- Validierung, ob ein neues Feature die Bedürfnisse der Benutzer erfüllt
- Alpha- und Beta-Tests am Ende / Abschluss jeder Iteration oder einer Serie davon
- Durchführung von Benutzerabnahmetests, betriebliche Abnahmetests, regulatorische und vertragliche Abnahmetests
 - o zum / nach Abschluss einer Iteration oder
 - o nach einer Reihe von Iterationen

Die Verantwortung liegt häufig beim Kunden, Fachanwender, Product Owner

Regulatorischer oder vertraglicher Abnahmetest

Hauptziel: Vertrauen aufbauen! Auflagen / Verträge werden erfüllt!

Vertraglicher Abnahmetest

- Kundenindividuelle Software muss vom Auftraggeber abgenommen werden
- Nachprüfbare Abnahmekriterien sollten bereits bei Vertragsschluss definiert werden – zur Absicherung beider Vertragsparteien
- o Durchführung von unabhängigen Testern oder den Benutzern (Usern)

Regulatorischer Abnahmetest

- Einhaltung von gesetzlichen, staatlichen oder anderen verbindlichen Vorschriften zur funktionalen Sicherheit (z.B. bei Banken: Auflagen der Aufsicht zur Funktionentrennung)
- o Durchführung von unabhängigen Testern oder den Benutzern
- o Oft auch Abnahme durch Aufsichtsbehörden, Auditoren

Certified Tester Foundation Level

© trendig technology services GmbH

150

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Abnahmetest

Benutzer-Abnahmetest (user acceptance testing (UAT))

Wird die Software von den späteren Anwendern / Nutzern akzeptiert?

 Wird auch möglichst während der Entwicklung schon geprüft (z.B. durch Prototypen)

Getestet wird, ob das System

- die Erwartungen verschiedener Benutzer bzw. Benutzergruppen erfüllt
- einen positiven Eindruck beim Anwender hinterlässt
- Mängel aufweist, die die Benutzerakzeptanz reduzieren
- für den Gebrauch durch den Anwender / Kunden tauglich ist

Betrieblicher Abnahmetest (operational acceptance testing (OAT))

Abnahme durch **Systemadministratoren**, Mitarbeitern des späteren Produktionsbetriebs

Durchführung in einer simulierten Produktivumgebung

- Einbindung in vorhandene IT-Infrastrukturen (Backup- / Restore-Systeme, Lauffähigkeit auf Servern, Restart-, Installations-, De-Installations-Fähigkeit)
- Benutzerverwaltung: Einbindung in vorhandene Verzeichnis-Strukturen oder Verwaltung einer eigenen Benutzer-Liste
- Umsetzung Benutzerrechte-Konzept
- o Identifizieren von Sicherheitsschwachstellen
- Prüfung von Datenlade- und Migrationsaufgaben
- Möglichkeit der Durchführung von Wartungsaufgaben (z. B. Datenbank-Reorganisationen)
- o Notfallwiederherstellung (disaster recovery), wo setzt das System wieder auf
- Performancetest, Lasttest, ggf. Stresstest

Certified Tester Foundation Level

© trendig technology services GmbH

152

- II. Testen im Softwareentwicklungslebenszyklus »
- 2. Teststufen: Abnahmetest

Alpha- und Beta-Test

- Meist genutzt von Entwicklern von Standardsoftware und COTS* Software
- Hersteller erhält Rückmeldung von Fehlerwirkungen, Bewertung der Benutzbarkeit etc. vor der Markteinführung
- Testdurchführung erfolgt durch den potentiellen Kunden, Betreiber oder von unabhängigen Testteams
 - o Alpha-Test: Test in der Umgebung des Herstellers / Entwicklers
 - o Beta-Test: Test in und an deren eigenen Standorten
- Vorteile des Alpha- bzw. Beta-Tests
 - Vertrauen schaffen, das System ist unter normalen Umständen gut nutzbar und bringt dem Anwender einen Nutzen
 - Finden von Fehlerzuständen, die sich auf bestimmte Bedingungen, Umgebungen,
 Zielsysteme beziehen, die im Test nur schwer nachzubauen sind

^{*} COTS = commercial off the shelf

Zusammenfassung Abnahmetest

- Der Abnahmetest ist der Systemtest durch den Kunden
- Der regulatorische und vertragliche Abnahmetest stellt die vertragliche Erfüllung sicher, die Software wird auf Erfüllung der Kundenanforderungen geprüft
- Der Benutzer-Abnahmetest prüft die Tauglichkeit eines Systems durch Benutzer bzw. Kunden. Es werden unterschiedliche Benutzergruppen berücksichtigt
- Der betriebliche Abnahmetest wird vom Systemadministrator durchgeführt (Benutzerverwaltung)
- Alpha-Tests finden beim Hersteller der SW durch (potenzielle) Kunden / Nutzer in separaten Umgebungen statt
- Beta-Tests sind Feldtests, in denen Kunden Vorabversionen der Software in ihrer eigenen Umgebung testen

Certified Tester Foundation Level

© trendig technology services GmbH

151

II. Testen im Softwareentwicklungslebenszyklus » Agenda

Kapitel II – Testen im Softwarelebenszyklus

- II/1 Softwareentwicklungslebenszyklusmodelle
- II/2 Teststufen
- II/3 Testarten
- II/4 Wartungstests

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Begriffe zu Testarten

· Testart (test type)

Eine Gruppe von Testaktivitäten basierend auf **bestimmten Testzielen** mit der Absicht, eine Komponente oder ein System auf einige zusammenhängende Qualitätsmerkmale Merkmale zu prüfen. [nach TMap]

- Testziel (test objective)
 Der Grund oder Zweck des Testens.
 - Bewertung funktionaler Qualitätsmerkmale (Vollständigkeit, Korrektheit, Angemessenheit)
 - Bewertung nicht-funktionaler Qualitätsmerkmale
 (Zuverlässigkeit, Performance, Informationssicherheit, Kompatibilität, Usability)
 - Bewertung der Struktur oder Architektur auf Korrektheit und Vollständigkeit (Komponente, System)
 - Bewertung der Auswirkung von Änderungen
 (Behebung von Fehlerzuständen, Suche nach unerwünschten Nebenwirkungen (Regressionstests))

Certified Tester Foundation Level

© trendig technology services GmbH

156

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Begriffe zu Testarten

- Fehlernachtest (confirmation testing)
 Dynamisches Testen nach einer Fehlerkorrektur zum Zweck der Bestätigung, dass Fehlerwirkungen nicht mehr auftreten, nachdem die dafür ursächlichen Fehlerzustände korrigiert wurden.
- Regressionstest (regression testing)
 Testen einer bereits getesteten Komponente oder eines Systems nach einer
 Modifikation, um sicherzustellen, dass in nicht geänderten Bereichen durch die vorgenommenen Änderungen keine Fehlerzustände eingebaut oder bisher maskierte Fehlerzustände freigelegt wurden.
- White-Box Test (white-box testing)
 Ein Test, der auf der Analyse der internen Struktur einer Komponente oder eines Systems basiert.

Funktionale Tests (was soll das System tun?)

Die Funktionalität bewertet die Funktionen, die das System ausführen soll

- Getestet wird gegen die funktionalen Anforderungen (aus Fachanforderungen, Spezifikationen, Epics, User-Stories, Anwendungsfällen, funktionalen Spezifikationen oder ähnlichen Dokumenten)
- Das Verhalten der Software kann mit Black-Box-Verfahren getestet werden: aus der Funktionalität der Komponente / des Systems werden Testbedingungen und Testfälle abgeleitet

Einsatz auf allen Teststufen jedoch mit unterschiedlichem Fokus / Intensität

Z.B. Komponententests gegen Komponentenspezifikation

Funktionale Überdeckung (Prozentsatz der Testarten, die abgedeckt sind)

- o Einsatz der Verfolgbarkeit zwischen Test und funktionalen Anforderungen
- Überdeckungslücken können identifiziert werden

Spezielle Fähigkeiten und Fachwissen bei Testentwurf und Tests erforderlich

 Z.B. bei Computerspielen, Tests von Fahrerassistenzsystemen, geologischer Modellierungssoftware für die Gasindustrie

Certified Tester Foundation Level

© trendig technology services GmbH

450

- II. Testen im Softwareentwicklungslebenszyklus »
- 3. Testarten

Nicht-funktionale Tests

1 von

Merkmale von Systemen und Software werden getestet

- o Wie gut erfüllt das Testobjekt seinen Zweck?
- Produktmerkmale nach ISO 25010: Zuverlässigkeit, Benutzbarkeit, Effizienz, Änderbarkeit, Übertragbarkeit, IT-Sicherheit, Kompatibilität

Einsatz allen Teststufen, unterschiedlicher Intensität, so früh wie möglich

- Spätes Entdecken von Fehlerzuständen kann den Projekterfolg extrem gefährden
- Black-Box-Verfahren k\u00f6nnen herangezogen werden, um Testbedingungen und Testf\u00e4lle abzuleiten (z.B. Grenzwertanalyse f\u00fcr Stresstest in der Performance)

Nicht-funktionale Überdeckung (Prozentsatz der abgedeckten Testarten)

- Nutzung der Verfolgbarkeit zwischen Tests und z.B. unterstützten Endgeräten bei mobilen Applikationen, Kompatibilitätstests
- Aufdecken von potentiellen Überdeckungslücken

Fachwissen erforderlich (z.B. Sicherheitsschwachstellen, Benutzbarkeit)

o Erkennen von Schwachstellen im Entwurf (Technologie, Software, Benutzergruppe)

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Nicht-funktionale Tests - Beispiele

2 von

Lasttest (load testing)

Eine Art des Performanztests, die das Verhalten eines Systems oder einer Komponente unter wechselnder Last bewertet, üblicherweise zwischen zu erwartender niedriger, typischer sowie Spitzenlast.

- Stresstest (stress testing)
 Spezifische Form des Performanztests, die durchgeführt wird, um ein System oder eine Komponente an oder über den Grenzen, die in den Anforderungen spezifiziert wurden,
- Performanztest (performance testing)
 Testen zur Bestimmung der Performanz eines Softwareprodukts.

Certified Tester Foundation Level

zu bewerten.

© trendig technology services GmbH

160

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Nicht-funktionale Tests – Beispiele

3 von

Gebrauchstauglichkeitstest (usability testing)

Testen mit dem Ziel herauszufinden inwieweit das System durch spezifizierte Benutzer in einem bestimmten Kontext mit Effektivität, Effizienz und Zufriedenheit genutzt werden kann.

Zuverlässigkeitstest (reliability testing)

Testen, um die Zuverlässigkeit eines Softwareprodukts zu bestimmen.

Übertragbarkeitstest (portability testing)

Testen zur Bestimmung der Übertragbarkeit eines Softwareprodukts.

Wartbarkeitstest (maintainability testing)

Testen, um die Änderbarkeit eines Softwareprodukts zu bestimmen.

- Robustheitstest (robustness testing)
 - (1) Test zum Ermitteln der Robustheit eines Softwareprodukts
 - (2) siehe Negativtest

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Nicht-funktionale Tests - Beispiele

4 von

• IT-Sicherheitstest (security testing)

Die Durchführung von Tests, um die Sicherheit (im Sinne von Zugriffsschutz) eines Softwareprodukts zu bestimmen.

• Interoperabilitätstest / Test der Kompatibilität (interoperability testing)

Testen zur Bestimmung der Interoperabilität eines Softwareprodukts. Wie zwei oder mehr Komponenten oder Systeme Informationen austauschen und diese nutzen können.

Certified Tester Foundation Level

© trendig technology services GmbH

162

- II. Testen im Softwareentwicklungslebenszyklus »
- 3. Testarten

White-Box Test

- Strukturelle Überdeckung
 - Analysiert wird die interne Struktur des Testobjekts (Code, Architektur, Workflows, Datenflüsse)
 - Gemessen wird der Prozentgrad der Überdeckung, wie vollständig die strukturellen Elemente durch Tests ausgeführt wurden
- Teststufe: Komponententest
 - Codeüberdeckung, Überdeckungsmessung, wie viele Anweisungen / Entscheidungen ausgeführt wurden in Relation zur Gesamtanzahl (mittels Tools)
- Teststufe: Komponentenintegrationstest
 - Überdeckungsmessung auf Basis der Architektur des Systems (interne Schnittstellten)
 - aber auch im System- und Abnahmetest möglich (Menüstrukturen, Geschäftsprozesse)
- Spezielle Fähigkeiten und Fachwissen über White-Box-Testing / -Tools
 - Z.B. wie ist der Code aufgebaut; wie werden die Daten gespeichert für Datenbankanfragen; korrekte Interpretation der Ergebnismessungen der Tools

- II. Testen im Softwareentwicklungslebenszyklus »
- 3. Testarten

Änderungsbezogenes Testen

1 von 3

Veränderungen am Testobjekt können neue Fehlerwirkungen bringen

Erneute Tests stellen sicher, dass


- Fehlerzustände erfolgreich korrigiert wurden (alte Testfälle, Fehlernachtest)
- neue Funktionen korrekt implementiert sind (neue Testfälle)
- keine ungewünschte Beeinflussung der Altfunktionalität stattgefunden hat (alte Testfälle, Regressionstest)

Modularität und gute Dokumentation erleichtern Bewertung, welchen **Einfluss** eine Änderung auf das Altsystem hat

Einsatzgebiet in **allen Teststufen** und mit allen Testarten

Certified Tester Foundation Level

© trendig technology services GmbH

164

- II. Testen im Softwareentwicklungslebenszyklus »
- 3. Testarten

Änderungsbezogenes Testen

2 von

- Fehlernachtest (Korrektur eines Fehlerzustandes)
- o Durchführung aller Testfälle, die aufgrund des Fehlerzustandes fehlschlugen
 - o Durchführung aller Schritte (Reproduktion), die zur Fehlerwirkung geführt haben
- Test der neuen Features (bzw. Änderungen)
 - o Neue Testfälle bei ergänzten Funktionalitäten
- Regressionstest (Auffindung unbeabsichtigter Nebeneffekte)
 - Änderungen im Code können versehentlich das Verhalten anderer Teile des Codes beeinflussen
 - Jede Art von Änderung kann unerwünschte Fehlerwirkungen erzeugen (innerhalb der Komponente, in anderen Komponenten, anderen Systemen)
 - Änderungen der Umgebung wie Versionswechsel des Betriebssystem oder des Datenbankmanagementsystems können Fehlerwirkungen erzeugen
 - Die unerwünschten Nebeneffekte nennt man Regression
 - o Regressionstests sollen diese Nebeneffekte aufzeigen

Änderungsbezogenes Testen

3 von 3

- Iterative und inkrementelle Entwicklungslebenszyklen (agile)
 - o Neue Features, Änderungen in Features, Code-Restrukturierung (refactoring)
 - Häufige Codeänderungen erfordern änderungsbezogene Tests
 - Fehlernachtests und Regressionstests sind elementar wichtig
 - Insbesondere bei Systemen des Internets der Dinge (Individuelle Objekte, wie Endgeräte, werden aktualisiert oder ersetzt)
- Regressionstestsuiten
 - Regressionstest bleiben oft stabil, unterliegen wenigen Änderungen
 - Automatisierung der Regressionstests ist daher sinnvoll
 - o Die Automatisierung sollte früh im Testprozess beginnen (s. Kap. 6)

Certified Tester Foundation Level

© trendig technology services GmbH

166

- II. Testen im Softwareentwicklungslebenszyklus »
- 3. Testarten

Testarten und Teststufen

Abnahmetest

Teststufen

Systemtest

- Jede der genannten Testarten ist in jeder Teststufe einsetzbar, aber mit unterschiedlichem Fokus und Intensität
 - Komponententest

Integrationstest

o In jeder Teststufe sind die Testbedingungen unterschiedlich

Programmierung

Testarten

- Funktionale Tests (Nachweis der Funktionalität)
- o Nicht-funktionale Tests (Nachweis der Produktmerkmale)
- o Strukturbezogener Test (Überdeckung erreichen)
- o Änderungsbezogenes Testen (Nachweis korrekter Fehlerbehebung)

Im folgenden sind Beispiele für die Anwendung der Testarten auf die Teststufen auf Basis einer Banking-Anwendung skizziert

II. Testen im Softwareentwicklungslebenszyklus »3. Testarten

Testarten und Teststufen – Funktionale Tests

- Komponententest
 - o Grundlage der Tests: Berechnung von Zinseszinsen
- Komponenten-Integrationstest
 - Grundlage der Tests: Übertragung der Erfassung von Kontoinformationen auf der Benutzeroberfläche in die fachliche Logik
- Systemtest
 - o Grundlage der Tests: Kontoinhaber beantragt eine Kreditlinie für sein Konto
- System-Integrationstest
 - Grundlage der Tests: Nutzung eines Microservices zur Bonitätsprüfung des Kontoinhabers
- Abnahmetest
 - Grundlage der Tests: Bankmitarbeiter entscheidet über Annahme oder Ablehnung der Kreditanfrage

Certified Tester Foundation Level

© trendig technology services GmbH

168

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Testarten und Teststufen – Nicht-funktionale Tests

- Komponententest
 - o Bewertung der Anzahl von CPU-Zyklen zur Berechnung der Gesamtverzinsung
- Komponentenintegrationstest
 - Informationssicherheitstests für Speicherüberlauf-Schwachstellen für Daten, die von der GUI an die fachliche Logik übertragen werden
- Systemtest
 - Übertragbarkeitstests zur Prüfung, ob die Präsentationsschicht auf allen unterstützten Browsern und Endgeräten funktioniert
- Systemintegrationstest
 - Zuverlässigkeitstests: Robustheit des Systems bei Nichtantwort des Microservices
- Abnahmetest
 - Gebrauchstauglichkeit: Barrierefreiheit der Kreditbearbeitungsoberfläche für Menschen mit Behinderungen

Testarten und Teststufen - Strukturbezogene Tests

- Komponententest
 - 100% Überdeckung für Anweisungen und Entscheidungen der Berechnungskompente
- Komponenten-Integrationstest
 - o Übertragung der Daten von einer GUI an die nächste und an die Fachlogik
- Systemtest
 - o Überdeckung aller Websites, die während der Kreditanfrage angezeigt werden
- System-Integrationstest
 - Ausführung aller möglichen Anfragearten an den Bonitäts-Microservice
- Abnahmetest
 - Überdeckung aller unterstützter Dateistrukturen der Finanzdaten und Wertebereiche für Zahlungsverkehr zwischen Banken

Certified Tester Foundation Level

© trendig technology services GmbH

470

II. Testen im Softwareentwicklungslebenszyklus »

3. Testarten

Testarten und Teststufen – Änderungsbezogenes Testen

- Komponententest
 - Automatisierte Regressionstests f
 ür jede Komponente des Continuous-Integration Frameworks
- Komponenten-Integrationstest
 - Prüfung nach dem Einchecken im Code-Repository, ob die schnittstellenbasierten Fehlerzustände behoben wurden
- Systemtest
 - Nach einer GUI-Änderung, Wiederholung aller Tests zu diesem Workflow
- System-Integrationstest
 - Wiederholung der Interaktion mit dem Bonitäts-Microservice nach als Teil der kontinuierlichen Verteilung (continuous deployment)
- Abnahmetest
 - Wiederholung aller fehlgeschlagenen Tests des Abnahmetests nach Fehlerbehebung

- II. Testen im Softwareentwicklungslebenszyklus »
- 3. Testarten

Zusammenfassung

- In den unterschiedlichen Teststufen können unterschiedliche Testarten eingesetzt werden
- Bei Testarten wird unterschieden: funktionale, nicht-funktionale, White-Box-Tests und änderungsbezogene Tests
- Funktionale Tests testen das Ein- / Ausgabeverhalten des Produktes
- Nicht-funktionale Tests pr

 üfen die Softwaremerkmale
- Wichtige nicht-funktionale Tests sind Lasttest, Performancetest, Stresstest, Robustheitstest
- White-Box-Tests leiten sich aus der internen Struktur oder der Umsetzung des Systems ab und messen Überdeckungen
- Die wichtigsten änderungsbezogenen Tests sind der Fehlernachtest und der Regressionstest

Certified Tester Foundation Level

© trendig technology services GmbH

172

II. Testen im Softwareentwicklungslebenszyklus » Agenda

Kapitel II - Testen im Softwarelebenszyklus

- II/1 Softwareentwicklungslebenszyklusmodelle
- II/2 Teststufen
- II/3 Testarten
- II/4 Wartungstests

II. Testen im Softwareentwicklungslebenszyklus »

4. Wartungstest

Testen nach der Produktabnahme - Wartungstest

Wartungstest (maintenance testing)
 Testen der Änderungen an einem laufenden System oder der Auswirkungen einer geänderten Umgebung auf ein laufendes System.

Der Kunde hat das **Produkt abgenommen** und es in Produktion gebracht Die **Software** selbst steht aber erst am **Anfang** ihres Lebens

- o Sie wird oft über viele Jahre eingesetzt und auch weiterentwickelt
- o Sie ist sicher nicht fehlerfrei und wird deshalb weiter bearbeitet
- Sie muss an neue Bedingungen angepasst oder in neue Umgebungen integriert werden

Wartungs-Release

- o Wartungstests erstrecken sich über mehrere Teststufen und mehrere Testarten
- o Risikohöhe der Änderung (Grad der Abhängigkeit zu anderen Bereichen)
- o Größe des Systems und Umfang der Änderungen

Certified Tester Foundation Level

© trendig technology services GmbH

174

- II. Testen im Softwareentwicklungslebenszyklus »
- 4. Wartungstest

Auslöser für Wartung

Softwarewartung unterscheidet drei Arten von Tätigkeiten

- Modifikation: Beseitigung von Fehlerzuständen, geplante Verbesserungen, Aktualisierung von kommerzielle Standardsoftware
- Migration: Test in neuer Umgebung,
 Datenkonvertierungen, Datenübernahme
- o Außerbetriebnahme: Ablösung der Software

Testumfang der Wartungstests

- o Fehlerkorrektur: Fehlernachtests
- o Weiterentwicklung: neue Testfälle
- o Datenarchivierung / Wiederherstellungsverfahren
- Bei "Internet der Dinge"-Systemen stehen Integrationstests (Netzwerke, etc.), Sicherheitstests, Hardwaregeräte und Softwaredienste im Fokus
- Zusätzlich immer ausgiebige Regressionstests

II. Testen im Softwareentwicklungslebenszyklus » 4. Wartungstest

Auswirkungsanalyse für Wartung

Auswirkungsanalyse (impact analysis)

Die Untersuchung und Darstellung der Auswirkungen einer Anderung von spezifizierten Anforderungen auf die Entwicklungsdokumente, auf die Testdokumentation und auf die Komponenten

- Bewertung möglicher Nebeneffekte auf andere Bereiche des Systems
- Auswirkung der Änderung auf bestehende Tests
- Umfang der Regressionstests der Systeme, die von der Änderung betroffen sind
- o Bewertung potentieller Folgen für andere Bereiche des Systems
- o Risiken:
 - Spezifikationen veraltet oder nicht vorhanden
 - Testfälle nicht dokumentiert oder veraltet
 - Bidirektionale Verfolgbarkeit zwischen Tests und Testbasis nicht gegeben
 - Werkzeugunterstützung kaum oder nicht existent
 - Fach- und Systemkenntnisse nicht mehr vorhanden bei den Stakeholdern
 - Wartbarkeit und Dokumentation bei Systemerstellung vernachlässigt

Certified Tester Foundation Level

© trendig technology services GmbH

- II. Testen im Softwareentwicklungslebenszyklus »
- 4. Wartungstest

Zusammenfassung

- Fertiggestellte Software ändert sich bzw. muss angepasst werden
- Auswirkungen dieser Änderungen werden durch eine Auswirkungsanalyse erfasst (Umfang der Regressionstests)
- Eine vorausschauende Release-Planung ist entscheidend
- Durch erneute Tests ist sicherzustellen, dass
 - o neue Funktionen korrekt implementiert sind (durch neue Testfälle)
 - o Fehlerzustände erfolgreich korrigiert wurden (durch Testfälle die vorher die Fehlerwirkungen erzeugt haben)
 - o keine ungewünschte Beeinflussung der Altfunktionalität stattgefunden hat (durch alte Testfälle, Regressionstest)
- Migrationstests sind Wartungstests
- Wird die Software eingezogen (aus dem Betrieb genommen), sind ggf. Tests der Datenmigration, Systemintegration und Archivierung notwendig

II. Testen im Softwareentwicklungslebenszyklus » Schlüsselbegriffe

Schlüsselbegriffe

- Abnahmetest
- Änderungsbezogenes Testen
- Alpha-Test
- Auswirkungsanalyse
- Benutzerabnahmetest
- Beta-Test
- Betrieblicher Abnahmetest
- Fehlernachtest
- Funktionaler Test
- Integrationstest
- Kommerzielle Standardsoftware
- Komponentenintegrationstest
- Komponententest
- Nicht-funktionaler Test
- Regressionstest

Certified Tester Foundation Level

- Regulatorischer Abnahmetest
- Sequenzielles Entwicklungsmodell
- Systemintegrationstest
- Systemtest
- Testart
- Testbasis
- Testfall
- Testobjekt
- Teststufe
- Testumgebung
- Testziel
- Vertraglicher Abnahmetest
- Wartungstest
- White-Box-Test

© trendig technology services GmbH

178

III. Statischer Test »Agenda

Kapitel III - Statischer Test

- III/1 Grundlagen des statischen Tests
- III/2 Reviewprozess

Certified Tester Foundation Level

© trendig technology services GmbH

180

III. Statischer Test » Lernziele

Lernziele für den statischen Test

1 von 2

3.1 Grundlagen des statischen Tests

FL-3.1.1 (K1)	Arten von Softwarearbeitsergebnissen erkennen können, die durch die
	verschiedenen statischen Testverfahren geprüft werden können

FL-3.1.2 (K2)	Beispiele nennen können, um den Wert des statischen Tests zu
	beschreiben

FL-3.1.3 (K2)	Den Unterschied zwischen statischen und dynamischen Verfahren unter
	Berücksichtigung der Ziele, der zu identifizierenden Fehlerzustände und
	der Rolle dieser Verfahren innerhalb des Softwarelebenszyklus erklären
	können

Lernziele für den statischen Test

2 von 2

3.2 Reviewprozess

FL-3.2.1 (K2)	Die Aktivitäten des Reviewprozesses für Arbeitsergebnisse zusammenfassen können
FL-3.2.2 (K1)	Die unterschiedlichen Rollen und Verantwortlichkeiten in einem formalen Review erkennen können
FL-3.2.3 (K2)	Die Unterschiede zwischen den unterschiedlichen Reviewarten erklären können: informelles Review, Walkthrough, technisches Review und Inspektion
FL-3.2.4 (K3)	Ein Reviewverfahren auf ein Arbeitsergebnis anwenden können, um Fehlerzustände zu finden
FL-3.2.5 (K2)	Die Faktoren erklären können, die zu einem erfolgreichen Review beitragen

Certified Tester Foundation Level

© trendig technology services GmbH

182

III. Statischer Test » Agenda

Kapitel III – Statischer Test

- III/1 Grundlagen des statischen Tests
- III/2 Reviewprozess

1. Grundlagen des statischen Tests

Statische Prüftechniken resp. Testverfahren

- Statische Tests umfassen
 - o Reviews (manuelle Prüfung) von Arbeitsergebnissen
 - o Statische Analysen (werkzeuggestützt) des Codes oder anderer Arbeitsergebnisse
- Jedes Arbeitsergebnis der Softwareentwicklung kann einem Review unterzogen werden, auch Code
- Statische Analyse ist eine werkzeuggestützte Bewertung des Prüfobjekts
 - Sicherheitskritische Systeme (Luftfahrt, Medizintechnik, Nuklearkraftwerk)
 - o IT-Sicherheitskritische Systeme
 - Eingebettet in automatisierte Build & Delivery-Systeme im agilen Umfeld Teil der continuous delivery / deployment Auslieferung
- Vor einem Codereview kann eine statische Analyse (Kontrollflussanalyse, Datenflussanalyse) hilfreich sein
- Statische Tests adressieren Fehlerzustände, nicht Fehlerwirkungen
- Der Code oder das Arbeitsergebnis werden nicht ausgeführt

Certified Tester Foundation Level

© trendig technology services GmbH

184

Begriffe

Statischer Test (static testing)

Testen von Software-Entwicklungsartefakten, z.B. Anforderungen oder Quelltext, ohne diese auszuführen. Z.B. durch Reviews oder statische Analyse

Review (review)

Eine Art des statischen Tests, während der ein Arbeitsergebnis oder ein Prozess von einer oder mehreren Personen beurteilt werden, um Befunde zu erheben und um Verbesserungspotentiale zu identifizieren. [IEEE 1028]

Statische Analyse (static analysis)

Der Prozess der Bewertung eines Testobjekts (Komponente oder System) basierend auf seiner Form, seiner Struktur, seines Inhalts oder seiner Dokumentation, ohne es auszuführen. [ISO 24765]

Dynamischer Test (dynamic testing)
 Prüfung des Testobjekts durch Ausführung auf einem Rechner

Review vs. Statische Analyse

Bei einem Review analysiert der Gutachter bzw. Reviewer (Tester) das Prüfobjekt manuell

- Z. B. Spezifikationen oder Code
- Gutachter muss analytische Arbeit liegen und das Pr
 üfobjekt inhaltlich (fachlich, technisch) beurteilen k
 önnen

Die statische Analyse prüft formale Strukturen von Arbeitsergebnissen

- Z. B. Code oder Modelle mittels Kontrollflussoder Datenflussanalyse
- Geeignetes statisches Analysewerkzeug notwendig
- Auch für natürliche Sprache (Rechtschreibung, Grammatik, Lesbarkeit)

Certified Tester Foundation Level

© trendig technology services GmbH

186

III. Statischer Test »1. Grundlagen des statischen Tests

Arbeitsergebnisse, die durch statische Tests geprüft werden können

Fast jedes Arbeitsergebnis der Softwareentwicklung kann einem Review oder einer statischen Analyse unterzogen werden

- Spezifikationen (Fachkonzepte, Sicherheitsanforderungen, etc.)
- Epics, User-Stories, Abnahmekriterien
- Spezifikationen von Architektur und Entwürfen
- Code, Websites, Benutzeranleitungen
- Testmittel (Testkonzepte, Testfälle, Testabläufe, automatisierte Testskripte)
- Verträge, Pläne für Projekt, Zeit, Budget, Personen
- Test-Infrastruktur/Testumgebung mit deren unterschiedlichen Konfigurationen
- Modelle wie Aktivitätsdiagramme (modellbasiertes Testen, CTFL Model Based Tester)

1. Grundlagen des statischen Tests

Anforderungs-Definition

Funktionaler

Systementwurf

Technischer

Systementwurf

Komponenten-

spezifikation

Programmierung

Vorteile des statischen Tests

- · Einsatz früh im SW-Entwicklungslebenszyklus
 - Die Verifizierungen im linken Zweig des V-Modells – also der korrekten Umsetzung der Anforderungen von einer Stufe zur nächsten – erfolgen per Review
- Eine hohe Qualität der Dokumente (aller Dokumente) fördert zwangsläufig die Produktqualität
 - Erkennen von Fehlerzuständen bevor dynamische Tests durchgeführt werden (Anforderungsreviews, Refinements)
- Kosten können eingespart werden
 - Fehlerzustände frühzeitig beheben, ist günstiger, als sie erst nach Fertigstellung und Einsatz im Produktivsystem zu finden und zu beheben
 - Fehlerzustände frühzeitig zu finden und zu beheben, ist meist günstiger, als erst beim Einsatz dynamischer Tests zur Auffindung von Fehlerzuständen, die dann mit Fehlernachtests und Regressionstests verbunden sind

Certified Tester Foundation Level

© trendig technology services GmbH

188

III. Statischer Test »

Grundlagen des statischen Tests

Vorteile des statischen Tests

2 von 2

Weitere Vorteile statischer Tests

- o Fehlerzustände erkennen und beheben vor der Durchführung dynamischer Tests
- o Fehlerzustände identifizieren, die mit dynamischen Tests schwerer zu finden sind
- Fehlerzustände aufdecken in Anforderungen vor der Umsetzung
 - Inkonsistenzen, Widersprüche, Mehrdeutigkeiten, Redundanzen, Auslassungen, etc.
- o Wartungsfähiger Code, verbesserte Entwürfe (Entwicklungsproduktivität)
- Reduktion von Entwicklungskosten und -zeit
- o Reduktion von Testkosten und -zeit
- Reduktion der Gesamtkosten der Qualität über die gesamte Lebenszeit der SW
 - Weniger Fehlerwirkungen im späteren Verlauf des Lebenszyklus oder nach Auslieferung
- Verbesserte Kommunikation zwischen den Teammitgliedern
 - Teilnahme an Reviews f\u00f6rdert gegenseitiges Verst\u00e4ndnis und Austausch des Know-Hows
- Auffinden von Wartbarkeitsfehlern
 - Schlechte Modularisierung, schlechte Wiederverwendbarkeit von Komponenten, schlecht lesbarer Code, etc.

Unterschiede zwischen statischen und dynamischen Tests

Statische Verfahren ergänzen dynamische Testmethoden

- o Gefunden werden Fehlerzustände, nicht Fehlerwirkungen
- o Effektiver und effizienter als durch dynamische Tests zu finden
- Untersucht werden auch Konzepte, nicht nur ausführbare Software
- o Fehlerzustände lassen sich später durch dynamische Tests oft schwerer finden
- o Verbesserung der Konsistenz und der internen Qualität der Arbeitsergebnisse

Typische Fehlerzustände, die einfacher und günstiger zu beheben sind

- o Anforderungsfehler (Inkonsistenzen, Widersprüche, Redundanzen, etc.)
- o Entwurfsfehler (hohe Kopplung, geringe Kohäsion, ineffiziente Algorithmen, etc.)
- o Programmierfehler (Variablen, die undefiniert oder nicht verwendet werden, etc.)
- Abweichungen von Standards (coding conventions, Programmierrichtlinien)
- o Falsche Schnittstellenspezifikationen (verschiedene Metriken, Datenlängen)
- o Schwachstellen in der Zugriffssicherheit (Pufferüberlauf, etc.)
- Verfolgbarkeit (Lücken, mangelnde Überdeckung, Ungenauigkeiten)

Certified Tester Foundation Level

© trendig technology services GmbH

100

III. Statischer Test »1. Grundlagen des statischen Tests

Zusammenfassung

- Bei statischen Tests wird das zu testende Objekt nicht ausgeführt
- Wichtige statische Prüftechniken sind Reviews und statische Analysen
- Reviews können früh im Entwicklungsprozess eingesetzt werden und ergänzen dynamische Testverfahren

Kapitel III - Statischer Test

- III/1 Statische Prüftechniken und der Testprozess
- III/2 Reviewprozess

Certified Tester Foundation Level

© trendig technology services GmbH

192

III. Statischer Test »2. Reviewprozess

Reviewprozess

Der Reviewprozess umfasst grundsätzlich die folgenden Hauptaktivitäten (die je nach Review-Art variieren können):

Certified Tester Foundation Level

© trendig technology services GmbH

193

2. Reviewprozess

Reviewprozess für Arbeitsergebnisse

Planung

- o Organisation des Reviews, Definition des Umfangs inkl. des Zwecks des Reviews, Auswahl der zu prüfenden Teile der Dokumente und der Qualitätsmerkmale, die bewertet werden sollen
- Schätzung von Aufwand und Zeitbedarf
- Auswahl der Teilnehmer und Zuordnung der Rollen
- Festlegung der Eingangs- und Endekriterien
- Prüfung, ob Eingangskriterien erfüllt sind

2. Reviewbeginn

- o Ggf. Treffen aller Beteiligten zu einer Vorbesprechung
- Ausgabe der Pr

 üfobjekte und anderer Materialien, wie Befundlistenvorlage, Checklisten und zugehörige Arbeitsergebnisse
- Erläuterung der Ziele, des Prozesses und der Dokumente

Certified Tester Foundation Level

© trendig technology services GmbH

III. Statischer Test »

Reviewprozess für Arbeitsergebnisse

- 3. Individuelles Review (individuelle Vorbereitung)
 - Review der Dokumenten / Prüfobjekte oder Teilen davon
 - Potentielle Fehlerzustände / Empfehlungen / Fragen werden festgehalten
- 4. Befundkommunikation und -analyse (Reviewsitzung)
 - o Kommunikation identifizierter potenzieller Fehlerzustände (z.B. in einer Reviewsitzung)
 - Analyse potenzieller Fehlerzustände, Zuweisung von Zuständigkeit und Status
 - Bewertung und Dokumentation von Qualitätsmerkmalen
 - Bewertung der Reviewbefunde gegenüber den Endekriterien, um eine Reviewentscheidung zu treffen (ablehnen, umfangreiche Änderungen notwendig, annehmen, vielleicht mit geringfügigen Änderungen)
 - Sachliche und fachliche Vorgehensweise bei der Erörterung der zu pr
 üfenden Aspekte
 - Diskussion oder Protokollierung mit dokumentierten Ergebnissen

Reviewprozess für Arbeitsergebnisse

3 von

- Fehlerbehebung und Bericht
 - a) Der Autor behebt die gefundenen Fehlerzustände Protokollierung des aktualisierten Fehlerstatus
 - Das M\u00e4nagement und der Reviewleiter erhalten das Protokoll der Sitzung mit folgenden Inhalten
 - Prüfobjekt und Vergleichsdokumente
 - Prüfen, ob die Fehlerzustände zugewiesen wurden
 - Sammeln von Metriken
 - Entscheidung, ob die Reviewziele erreicht wurden

Bei formaleren Review-Arten

- Messen der erzielten Ergebnisse anhand von Metriken
- Prüfung von Endekriterien

Certified Tester Foundation Level

© trendig technology services GmbH

196

III. Statischer Test »2. Reviewprozess

Rollen und Verantwortlichkeiten in einem formalen Review

1 yon 2

- Ein typisches formales Review definiert folgende Rollen:
 - Management
 - Ist verantwortlich für die Reviewplanung, initiiert das Review und entscheidet über die Durchführung, bestimmt Teilnehmer, Budget und Fristen, überwacht die Kosteneffizienz
 - Trifft Steuerentscheidungen bei unangemessenen Ergebnissen
 - Reviewleiter
 - Übernimmt die Verantwortung für die Reviewdurchführung
 - Entscheidet über Teilnehmer, Ort und Zeit der Durchführung
 - o (Review)Moderator
 - Steht neutral zum Prüfobjekt und leitet die Reviewsitzung
 - Lenkt die Diskussion / das Gespräch (zielorientiert)
 - Vermittelt zwischen den verschiedenen Standpunkten

Von der Qualität des Moderators hängt wesentlich der Erfolg des Reviews ab!

Rollen und Verantwortlichkeiten in einem formalen Review 2 von 2

- Protokollant
 - Protokolliert die Fehlerzustände, die bei individuellen Reviewaktivitäten gefunden wurden
 - Erfasst neue Fehlerzustände, offene Punkte und Entscheidungen der Sitzung
- o Autor
 - Ersteller oder Vertreter der Ersteller des Prüfobjektes
 - Nimmt anschließend selbst die geforderten Änderungen vor
- Gutachter
 - Sind die Fachexperten, die an dem Review teilnehmen
 - Decken potentielle Fehlerzustände, Problemstellen, etc. auf
 - Haben idealerweise Fokus auf spezielle Aspekte (Tester, Programmierer, Benutzer, Betreiber, Businessanalysten, Gebrauchstauglichkeitsexperten)
 - Schlagen vor, welche Teile des Prüfobjektes korrigiert werden sollen und welche unverändert beibehalten werden können

Certified Tester Foundation Level

© trendig technology services GmbH

198

III. Statischer Test » 2. Reviewprozess – Reviewarten trendig

Reviewarten (ISO 20246)

Reviews können von informell bis hin zu formal durchgeführt werden

- o Informelle folgen keinem definierten Prozess, haben kein dokumentiertes Ergebnis
- Formale definieren die Teilnahme von Teams, dokumentierte Ergebnisse und Vorgehensweisen für systematische Durchführung

Die Formalität bestimmt sich aus

- Dem Softwareentwicklungslebenszyklus-Modell
- Der Reife des Entwicklungsprozesses
- Der Komplexität der zu pr
 üfenden Arbeitsergebnisse
- Sicherheitsrelevanz des Produkts
- Rechtlichen oder regulatorischen Anforderungen/Prüfungsnachweis

Die Ziele eines Reviews bestimmen den Fokus eines Reviews

- o Finden von Fehlerzuständen, Verständnis gewinnen, Training von Teilnehmern
- Diskussionen und Entscheidungen treffen auf Basis eines Konsens

Reviewarten 2 von 7

Die hier vorgestellten gängigsten Reviewarten sind:

o Informelles Review, Walkthrough, Technisches Review, Inspektion

Hauptziel der Reviews ist – Fehlerzustände aufdecken

- o Verwendung der Reviewarten für unterschiedliche Zwecke
- Basieren auf den Projektbedürfnissen, den Ressourcen, der Produktart, Produktrisiken, Geschäftszweig, Unternehmenskultur

Reviewgegenstand - Arbeitsergebnisse

- o Ein Arbeitsergebnisse kann Gegenstand mehrerer Reviewarten sein
- o Die Reihenfolge ist nicht festgelegt (z.B. informelles Review vor einem technischen)

Durchführung in Form von Peer-Reviews

o Gleichgestellte Kollegen, gleiche Ebene in der Unternehmenshierarchie

Gefundene Fehlerarten variieren abhängig vom geprüften Arbeitsergebnis

Certified Tester Foundation Level

© trendig technology services GmbH

200

Reviewarten 3 von 7

Informelles Review (informal review)

Eine Art von Reviews, die keinem formalen (dokumentierten) Ablauf folgt. [ISO 20246] z.B. Buddy-Check, Pairing (paarweises Zusammenarbeiten), paarweises Review)

- o Hauptzweck Erkennen von potentiellen Fehlerzuständen
- Zusätzliche Zwecke Schnelle Lösung kleiner Probleme, Einbringen neuer Ideen oder Lösungen
- o Keine Reviewsitzung erforderlich
- o Ergebnisse können in Listenform weitergegeben werden
- Häufig in Form eines Gegenlesens der Prüfobjekte durch Kollegen
- Der Nutzen hängt vom Gutachter ab
- Checklisteneinsatz optional
- Einsatz verbreitet in der agilen Entwicklung

Reviewarten

4 von 7

Walkthrough

Eine Reviewart, bei der ein Autor die Reviewteilnehmer durch ein Arbeitsergebnis leitet und die Teilnehmer Fragen stellen und potentielle Befunde kommentieren. [ISO 20246] Siehe auch Peer Review

- Hauptzweck Fehlerzustände finden, Softwareprodukt verbessern, Alternativen prüfen; Konformität mit Standards und Spezifikationen bewerten
- Zusätzliche Zwecke Ideenaustausch (Verfahren, Stilvarianten), Konsenserzielung, Einarbeitung der Teilnehmer
- o Der Autor selbst leitet die Sitzung
- Protokoll ist obligatorisch
- Protokolle potentieller Fehlerzustände und Reviewberichte
- o Durchführungsformen: Szenarios, Dry Run (Probelauf), Simulationen
- Durchführung in der Praxis variiert von informell bis zu formal
- Optional: Nutzung von Checklisten, individuelle Vorbereitung

Certified Tester Foundation Level

© trendig technology services GmbH

202

Reviewarten

5 von 7

Technisches Review (technical review)

Eine formale Reviewart, bei der ein Team von technisch qualifizierten Personen die Eignung eines Arbeitsergebnisses für seine beabsichtigte Verwendung prüft und Abweichungen von Spezifikationen oder Standards identifiziert. [Gilb and Graham, ISO 20246]

- Hauptzweck Finden von Fehlerzuständen, Konsensgewinnung
- Weitere Zwecke Bewertung von Qualität, Vertrauen in das Arbeitsergebnis erzielen, neue Ideen einbringen, Verbesserung zukünftiger Arbeitsergebnisse
- Fachexperten werden benötigt als Gutachter
- Vorbereitung der Gutachter vor der Sitzung
- Eine Reviewsitzung ist optional, wird aber dann geleitet durch einen geschulten Reviewmoderator (nicht den Autor)
- o Protokollführung ist optional (nicht Autor), Optional: Einsatz von Checklisten
- Reviewbericht mit Liste der Befunde üblich (nicht vom Autor erstellt)
- Z. B. als Peer Review (ohne Management) durchführbar

Reviewarten

6 von 7

Inspektion (inspection)

Eine formale Reviewart deren Ziel die Identifizierung von Befunden in einem Arbeitsprodukt ist, und welche Messungen zur Verbesserung des Reviewprozesses und des Softwareentwicklungsprozesses liefert. [ISO 20246]

- Hauptzweck
 - Erkennen von Fehlerzuständen
 - Bewertung der Qualität
 - Vertrauen in das Arbeitsergebnis schaffen, durch das Lernen des Autors
 - Grundursachenanalyse zur Vermeidung zukünftiger ähnlicher Fehlerzustände
- Weitere Zwecke
 - Motivation des Autors
 - Befähigen des Autors in Zukunft bessere Arbeitsergebnisse zu erstellen
 - Verbesserung des Softwareentwicklungsprozesses
 - Konsens erzielen

Certified Tester Foundation Level

© trendig technology services GmbH

204

III. Statischer Test »2. Reviewprozess – Reviewarten

Reviewarten

7 von 7

- Inspektion Ablauf
 - Planen Kick-off als Reviewbeginn individuelle Vorbereitung als individuelles Review – Sitzung als Befundkommunikation und -analyse – Fehlerbehebung und Bericht
 - Definierter Prozess, formal dokumentierte Ergebnisse nach Regeln und Checklisten
 - Rollen und Verantwortlichkeiten sind klar definiert und verpflichtend (s. oben)
 - o Individuelle Vorbereitung vor der Sitzung
 - o Eventuell Vorleser, der das Prüfobjekt während der Sitzung laut vorliest
 - Gutachter sind gleichrangig mit dem Autor oder Experten in anderen Fachrichtungen
 - o Eingangs- und Endekriterien werden festgelegt und eingehalten
 - o Ein formaler Inspektionsbericht/Befundliste muss erstellt werden
 - o Sitzungsleitung erfolgt durch einen geschulten Moderator (nicht der Autor)
 - o Erstellung von Reviewberichten und Protokollierung potentieller Fehlerzustände
 - o Sammlung von Metriken zur Prozessverbesserung (für SE- und auch Prüfprozess)

Die Anwendung von Reviewverfahren

- Reviewverfahren dienen zur Anleitung der individuellen Vorbereitung auf Reviews, also der originären Prüfarbeit durch den Gutachter
- Verwendung bei allen vorgestellten Reviewarten möglich, ihre Effektivität variiert dabei
- Folgende Reviewverfahren werden vorgestellt
 - o Ad hoc
 - Checklistenbasiert
 - Szenarien und Dry Runs (Probeläufe)
 - Rollenbasiert
 - Perspektivisch

Certified Tester Foundation Level

© trendig technology services GmbH

- III. Statischer Test »
- 2. Reviewprozess Reviewverfahren

Die Anwendung von Reviewverfahren

- · Ad hoc
 - Wenig oder keine Anleitung zur Durchführung der Aufgabe als Gutachter
 - o Sequentielles Lesen und Identifizieren / Dokumentieren der Befunde
 - Wenig Vorbereitung erforderlich
 - Ergebnis hängt von den Fähigkeiten des Gutachters ab
 - Kann zu vielen doppelten Befunden führen
- Checklistenbasiert systematisches Verfahren
 - Systematische Überdeckung typischer Fehlerarten und Befundarten
 - o Befunde werden auf Basis von vorab verteilten Checklisten erkannt
 - o Ein Set von Fragen, erstellt auf Basis potentieller Fehlerzustände und Erfahrungen
 - o Zugeschnitten auf das Arbeitsergebnis, den Reviewgegenstand
 - o Regelmäßige Aktualisierung und Ergänzung aus vorhergegangenen Erkenntnissen
 - Fehlerzustände außerhalb der Checkliste nicht vernachlässigen

Die Anwendung von Reviewverfahren

3 von 4

- Szenarien und Dry Runs (Probeläufe) strukturierte Richtlinien
 - o Strukturierte Richtlinien zum Durchlesen eines Arbeitsergebnisses
 - Probeläufe auf Basis der erwarteten Nutzung des Arbeitsergebnisses
 - o Anwendungsfälle können als Basis genommen werden
 - Unterstützung bei der Suche nach spezifischen Fehlerarten
 - o Weitere Fehlerarten, wie fehlende Leistungsmerkmale, sollten beachtet werden
- Rollenbasiert sich in die Situation des Anwenders versetzen
 - o Individuelle Stakeholder-Rollen werden eingenommen
 - o Als Personen: erfahren, unerfahren, Senioren, Kinder etc.
 - o Als Organisationen: Benutzeradministrator, Performancetester, Systemadministrator
 - o viele der Prinzipien des perspektivischen Reviews passen auch hier

Certified Tester Foundation Level

© trendig technology services GmbH

208

III. Statischer Test »2. Reviewprozess – Reviewverfahren

Die Anwendung von Reviewverfahren

4 von

- Perspektivisch perspektivisches Lesen
 - Betrachtung unterschiedlicher Standpunkte unterschiedlicher Stakeholder
 - o Typische Sichtweisen: Endanwender, Marketing, Designer, Tester, Betrieb
 - Erfolg: weniger Dopplungen von Befunden unter den Gutachtern, mehr Tiefe im individuellen Review
 - Prüfung, ob sich aus dem Arbeitsergebnis z.B. ein Entwurf für Testfälle ableiten lässt
 - Einsatz von Checklisten (möglich)
 - Studien haben gezeigt, dass perspektivisches Lesen das effektivste allgemeine Verfahren für das Review von Anforderungen und technischen Arbeitsergebnissen ist
 - o Voraussetzung:
 - Korrekter Einbezug der Sichtweisen der Stakeholder
 - · Risikobasierte, angemessene Gewichtung

Erfolgsfaktoren für Reviews – organisatorisch

1 von 2

- Definition klarer Ziele in der Reviewplanung (messbares Endekriterium)
- Angemessene Anwendung der Reviewarten und Techniken in Abhängigkeit zu den zu reviewenden Unterlagen und Teilnehmern
- Alle Checklisten sind aktuell und enthalten Hauptrisiken
- Alle Reviewverfahren nutzen zur effektiven Identifizierung von Fehlerzuständen
- Autoren schon früh Rückmeldung geben zu Fehlerzuständen, Beginn mit den Reviews schon bei den ersten Teildokumenten
- Ausreichend Zeit und Budget für die Vorbereitung einplanen
- Reviews planen mit angemessener Vorankündigung
- Managementunterstützung schon in der Projektplanung, z.B. Bereitstellung von angemessener Zeit für die Reviewaktivitäten bereits im Projektplan

Certified Tester Foundation Level

© trendig technology services GmbH

210

III. Statischer Test »2. Reviewprozess – Erfolgsfaktoren

Erfolgsfaktoren für Reviews – personenbezogen

2 von 2

- o Auswahl der richtigen Personen, passend zu den Reviewzielen
 - Unterschiedliche Sichtweisen und Fähigkeiten (kein Streit unter den Gelehrten)
- Tester früh einbeziehen, sie sind wichtige Gutachter
 - Frühes Kennenlernen des Arbeitsergebnisses zur Vorbereitung von Tests, früher und effektiver
- Den Details angemessene Aufmerksamkeit und Zeit widmen
- Aufteilung der Reviews in kleine Schritte zum Erhalt der Konzentration der Gutachter
- Reviews zielorientiert durchzuführen (Fehlerzustände in den Reviewobjekten wertfrei und objektiv identifizieren), keine Bewertung der Teilnehmer
- Gute Reviewleitung, Review wird von den Teilnehmern als wertvoller Beitrag gesehen
- Vertrauensvolle Atmosphäre, keine personenbezogenen Bewertungen
- Keine Körpersprache, die Langeweile, Frust oder Feindseligkeit ausdrückt
- o Angemessene Schulungen für die formalen Reviewarten wie die Inspektion
- o Förderung einer Kultur des Lernens und der Prozessverbesserung

Übersicht über die Reviewarten - Vor- und Nachteile

Reviewart	Vorteile	Nachteile
Inspektion	strukturierte Sitzung Protokoll	langer Vorlauf viele Rollen, wie Moderator
Walkthrough	kurzer Vorlauf längere Sitzungsdauer Protokollant obligatorisch formal bis informell	Autoren gesteuert
Technisches Review	Gesamtbewertung Standards Protokoll Reviewsitzung optional	langer Vorlauf evtl. viele Rollen
Informelles Review	kurzer Vorlauf kostengünstig keine Sitzung	kein Protokoll

Certified Tester Foundation Level

© trendig technology services GmbH

212

III. Statischer Test »2. Reviewprozess

Übersicht über die Reviewarten – Eigenschaften

	Informelles Review	Technisches Review	Inspektion	Walkthrough
Ziel	 Aufdeckung von Unklarheiten und Fehlern Bewertung der Qualität 	 Beurteilung der Eignung des Prüfobjekts für den beabsichtigten Einsatz Aufdeckung von Unklarheiten und Fehlern Bestimmung der Qualität des Prüfobjekts 	 Aufdeckung von Unklarheiten und Fehlern Bestimmung der Qualität des Prüfobjekts Verbesserung des Entwicklungsprozesses 	 Fehlerzustände finden Wissenstransfer Verständnis erzielen
Rolle des Autors	Meist der Initiator	Nicht beteiligt oder beantwortet Fragen während Sitzung	Beantwortet Fragen während Sitzung	Stellt Prüfobjekt vor und beantwortet Fragen während der Sitzung
Vorbe- reitung	Mittlerer Aufwand: Verwendung von Prüfkriterien nicht vorgeschrieben	Hoher Aufwand: Gutachter prüfen das Prüfobjekt gemäß Reviewzielen (Checklisten) Befunde werden schriftlich festgehalten Verwendung ausschließlich offizieller Referenzdokumente Verwendung von formalen Prüfkriterien	Hoher Aufwand: Gutachter prüfen das Prüfobjekt gemäß Reviewzielen (Checklisten) Befunde werden schriftlich festgehalten Verwendung von formalen Prüfkriterien	Geringer Aufwand (z.T. kann sogar darauf verzichtet werden): Verwendung von Prüfkriterien nicht vorgeschrieben
Review- sitzung	Findet meist nicht statt	Erfassung und Diskussion der Befunde mit dem Ziel, ein einstimmiges Gesamturteil zu fällen	Formal und straff geführte Sitzung: Erfassung Diskussion Entscheid	Inhalte des Prüfobjektes werden (ablauforientiert) vorgetragen

Übung III.1: Review durchführen

(15 Min. Gruppenarbeit)

Führe ein Walkthrough für die gegebene Spezifikation durch (Online-Shop – Seite 4 Übungen)

Certified Tester Foundation Level

© trendig technology services GmbH

III. Statischer Test »2. Reviewprozes

Zusammenfassung

- Phasen eines Reviews: Planung Reviewbeginn individuelles Review Befundkommunikation und -analyse – Fehlerbehebung und Bericht
- Aufgaben und Rollen im Review: Management Reviewleiter Moderator Protokollant – Autor – Gutachter
- Reviewarten: Inspektion Walkthrough Technisches Review Informelles Review
- Reviewverfahren: Ad hoc Checklistenbasiert Szenarien und Dry Runs Rollenbasiert – Perspektivisch
- Schulungen in Reviewtechniken
- · Jedes Review hat klar vordefinierte Ziele
- Eingangs- und Endekriterien festlegen

III. Statischer Test » Schlüsselbegriffe

Schlüsselbegriffe

- Ad-hoc-Review
- Checklistenbasiertes Review
- Dynamischer Test
- Formales Review
- · Informelles Review
- Inspektion
- · Perspektivisches Lesen
- Review
- · Rollenbasiertes Review
- Statische Analyse
- Statischer Test
- Szenariobasiertes Review
- · Technisches Review
- Walkthrough

Certified Tester Foundation Level

© trendig technology services GmbH

216

Kapitel IV – Testverfahren

- IV/1 Kategorien von Testverfahren
- IV/2 Black-Box-Testverfahren
- IV/3 White-Box-Testverfahren
- IV/4 Erfahrungsbasierte Testverfahren

Certified Tester Foundation Level

© trendig technology services GmbH

240

IV. Testverfahren » Lernziele

Lernziele Testverfahren

1 von 2

4.1 Kategorien von Testverfahren

FL-4.1.1 (K2) Die Eigenschaften, Gemeinsamkeiten und Unterschiede zwischen Black-Box-Testverfahren, White-Box-Testverfahren und erfahrungsbasierten Testverfahren erklären können

4.2 Black-Box-Testverfahren

FL-4.2.1 (K3)	Die Äquivalenzklassenbildung anwenden können, um Testfälle aus vorgegebenen Anforderungen abzuleiten
	Die Grenzwertanalyse anwenden können, um Testfälle aus vorgegebenen Anforderungen abzuleiten

- FL-4.2.3 (K3) Entscheidungstabellentests anwenden können, um Testfälle aus vorgegebenen Anforderungen abzuleiten
- FL-4.2.4 (K3) Zustandsbasierte Tests anwenden können, um Testfälle aus vorgegebenen Anforderungen abzuleiten
- FL-4.2.5 (K2) Erklären können, wie man Testfälle aus einem Anwendungsfall ableitet

Lernziele Testverfahren

2 von

4.3 White-Box-Testverfahren

FL-4.3.1 (K2)	Anweisungsüberdeckung erklären können
FL-4.3.2 (K2)	Entscheidungsüberdeckung erklären können

FL-4.3.3 (K2) Die Bedeutung von Anweisungs- und Entscheidungsüberdeckung erklären können

4.4 Erfahrungsbasierte Testverfahren

FL-4.4.1 (K2)	Die intuitive Testfallermittlung erklären können
FL-4.4.2 (K2)	Exploratives Testen erklären können

FL-4.4.3 (K2) Checklistenbasiertes Testen erklären können

Certified Tester Foundation Level

© trendig technology services GmbH

220

IV. Testverfahren » Agenda

Kapitel IV - Testverfahren

- IV/1 Kategorien von Testverfahren
- IV/2 Black-Box-Testverfahren
- IV/3 White-Box-Testverfahren
- IV/4 Erfahrungsbasierte Testverfahren

Auswahl von Testverfahren

1 von 3

- Informationsstand zum Testobjekt
 - o Von welcher Art und Komplexität ist die Komponente / das Systems?
 - o Wie hoch ist Nutzungshäufigkeit der Software?
 - o Wird mit einem Softwareentwicklungslebenszyklus-Modell gearbeitet?
 - o Welche Werkzeuge sind verfügbar?
 - Ist Dokumentation verfügbar, aktuell und von welcher Qualität?
- Risikoaspekte und Kundenanforderungen
 - Wie groß sind potenzielle Schäden beim Nichtentdecken von Fehlerzuständen und -wirkungen? (Risikoart und Risikostufe)
 - o Gibt es Kundenanforderungen? Vertragliche Anforderungen?
 - Gibt es regulatorische Anforderungen an die Testdurchführung oder die Testüberdeckung? Standards?

Certified Tester Foundation Level

© trendig technology services GmbH

222

IV. Testverfahren »1. Kategorien von Testverfahren

Auswahl von Testverfahren

2 von 3

- Projekt-Rahmenbedingungen
 - o Wie viel Zeit und Budget steht zum Testen zur Verfügung?
 - o Welche Personen stehen als Tester zur Verfügung? (Kenntnisse, Fähigkeiten)
 - o Welche Erfahrung ist vorhanden in der Anwendung von Testverfahren?
 - o Mit welchen Softwareentwicklungsmodellen wird gearbeitet?
 - o Welche Testziele sind zu beachten?
- Eigenschaften des Testobjekts
 - o Welche Testfälle und Testdaten sind für das Testobjekt möglich?
 - o Welche Arten von Fehlerzuständen sind zu erwarten (Komponente / System)?

Auswahl von Testverfahren

- Teststufen
 - o Auf welchen Teststufen sind die welche Tests durchführbar?
 - Einige Verfahren sind auf allen Teststufen einsetzbar, andere weniger geeignet
- Kombination von Testverfahren
 - Wie wird eine angemessene Überdeckung gewährleistet?
 - o Welche Verfahren sollten geeignet kombiniert werden?
 - Welche Testverfahren eignen sich unter dem gegebenen Testaufwand und erzielen die besten Ergebnisse?
 - Gibt es Vorgaben für die Formalität (sehr informell sehr formal)?
 - Welche Einschränkungen liegen vor, bezüglich
 - Reife des Test- und Entwicklungsprozesses, zeitliche Beschränkungen
 - Informationssicherheits- oder regulatorische Anforderungen
 - Kenntnisse und Fähigkeiten der involvierten Personen (nicht nur der Tester)
 - Gewähltes Softwareentwicklungslebenszyklus-Modell?

Certified Tester Foundation Level

© trendig technology services GmbH

IV. Testverfahren » 1. Kategorien von Testverfahren

Kategorien von Testverfahren und ihre Eigenschaften

Dynamische Testverfahren werden in drei Kategorien unterteilt, diese

orientiert sich an der jeweiligen Grundlage für die Testfallermittlung

Jede der Kategorien umfasst verschiedene Verfahren zur Ermittlung der Testbedingungen, der Testfälle und der Testdaten für den dynamischen Test

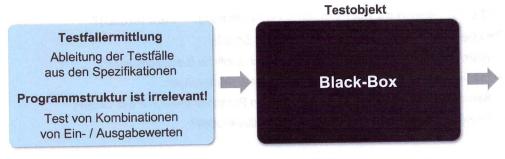
Black-Box Grenzwertanalyse Entscheidungstabellentests Zustandsübergangstest Anwendungsfallbasierter Test Analytische QS Erfahrungsbasierte Verfahren

Anweisungsüberdeckung White-Box Entscheidungsüberdeckung Bedingungsüberdeckung Pfadüberdeckung

Äquivalenzklassenbildung

Review/Walkthrough Kontrollflussanalyse Datenflussanalyse Compiler/Analysatoren

Black-Box-Testverfahren


Konzentration auf die Eingaben und Ausgaben des Testobjekts.

Ableitung der Testbedingungen, Testfälle, Testdaten systematisch aus der Testbasis wie zum Beispiel

 Softwareanforderungen, Spezifikationen, Anwendungsfälle, User-Stories, Geschäftsprozesse

Funktionale und nicht-funktionale Tests stehen im Fokus

o Es wird deshalb von spezifikationsbasierten Testverfahren gesprochen

Certified Tester Foundation Level

© trendig technology services GmbH

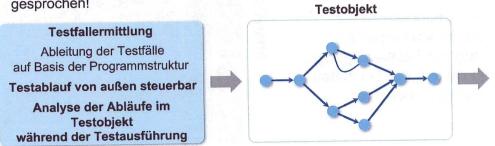
226

IV. Testverfahren »1. Kategorien von Testverfahren

White-Box-Testverfahren

Analyse der (inneren) Struktur des Testobjekts

o Architektur, Feinentwurf, interne Struktur, Code


Systematische Erstellung der Testbedingungen, Testfälle und Testdaten auf Basis der Analyse der Struktur resp. des Ablaufs

Während des Testlaufes wird die Überdeckung gemessen

Die Struktur des Testobjekts steht im Fokus

 Es wird deshalb von strukturellen oder strukturbasierten Testverfahren gesprochen!

Testobiekt

Certified Tester Foundation Level

© trendig technology services GmbH

Gängige Merkmale der Verfahren

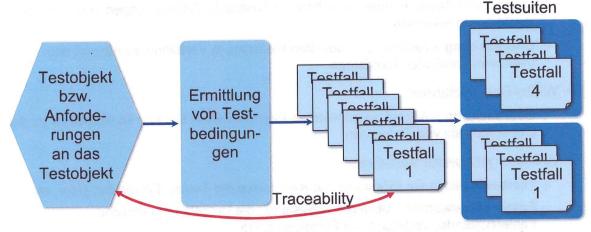
- Black-Box-Verfahren
 - Lücken und Abweichungen zwischen der Testbasis (Anforderungen, etc.) und der Realisierung erkennen
 - Überdeckung Anzahl der getesteten Elemente in Verhältnis zu den mit dem Verfahren ermittelten Elementen
- White-Box-Verfahren
 - Überdeckung Anzahl der getesteten Elemente einer Struktur im Verhältnis zu der Gesamtanzahl von Elementen
- Erfahrungsbasierte Verfahren
 - o Testbasis bilden die Erfahrung und Kenntnisse der Tester, Entwickler, User, etc.
 - Fokus: die erwartete Nutzung des Systems, die Umgebung, mögliche Fehlerzustände, Verteilung der Fehlerzustände
 - o Oft eine wichtige Ergänzung zu Black-Box- und White-Box-Verfahren

(ISO 29119-4 Beschreibungen von Testverfahren und ihren Überdeckungsmaßen)

Certified Tester Foundation Level

© trendig technology services GmbH

228


Begriffe

- Black-Box Testverfahren (black-box test design technique)
 Ein Verfahren zur Herleitung und/oder Auswahl von Testfällen, das auf einer Analyse der funktionalen oder nicht-funktionalen Spezifikation einer Komponente oder eines Systems basiert, ohne Berücksichtigung ihrer internen Struktur.
- White-Box-Testverfahren (white-box test design technique)
 Ein Verfahren zur Herleitung und Auswahl von Testfällen, basierend auf der internen
 Struktur einer Komponente oder eines Systems. Überdeckungsmessung auf Basis der
 Testobjekte und der angewandten Technik.
- Erfahrungsbasierte Testverfahren (experienced-based test design technique)
 Eine Vorgehensweise, mit der Testfälle auf Basis der Erfahrungen, dem Wissen und der Intuition der Tester abgeleitet und/oder ausgewählt werden.

Herleitung der Testfälle und Verfolgbarkeit / Traceability

Die Herleitung von Testfällen erfolgt mittels eines gesteuerten Prozesses

Je nach konkreter **Projektsituation** und Reifegrad der Prozesse kann der Entwurf von Testfällen und Testsequenzen sehr **formal** ablaufen **oder auch informell** durchgeführt werden

Certified Tester Foundation Level

© trendig technology services GmbH

230

IV. Testverfahren »1. Kategorien von Testverfahren

Zusammenfassung

- Testfälle können nach unterschiedlichen Verfahren hergeleitet werden
- Steht die Funktionalität eines Testobjektes im Vordergrund, spricht man vom spezifikationsorientierten Verfahren (Black-Box)
- Steht der innere Aufbau eines Testobjektes im Vordergrund, spricht man vom strukturorientierten Verfahren (White-Box)
- Erfahrungsbasierte Verfahren nutzen hauptsächlich die Kenntnisse und das Wissen von Testern, Entwicklern und Anwendern

Kapitel IV - Testverfahren

- IV/1 Kategorien von Testverfahren
- IV/2 Black-Box-Testverfahren
- IV/3 White-Box-Testverfahren
- IV/4 Erfahrungsbasierte Testverfahren

Certified Tester Foundation Level

© trendig technology services GmbH

232

IV. Testverfahren »2. Black-Box-Testverfahren

Allgemeines

- Folgende Black-Box Testverfahren werden vertieft behandelt
 - Äquivalenzklassenbildung
 - o Grenzwertanalyse
 - o Entscheidungstabellentests
 - o Zustandsübergangstest
 - o Anwendungsfallbasierter Test (use cases)
- Es handelt sich dabei um die wichtigsten und gebräuchlichsten Verfahren
- Ziele der systematischen Testfallermittlung sind eine Reduktion der Testfälle und sicherzustellen, dass die verbleibenden Testfälle eine hohe Wahrscheinlichkeit aufweisen. Fehlerzustände zu finden

Funktionales Testen

Ziel des funktionalen Testens ist die Prüfung auf Vollständigkeit und Korrektheit der Funktionen

- Die Software wird gegen ihre Spezifikationen geprüft
- o Sind alle geforderten Funktionen korrekt enthalten?

Die Durchführung des Tests sollte redundanzarm und dennoch umfassend sein

Nicht mehr als nötig testen!

Certified Tester Foundation Level

© trendig technology services GmbH

234

Äquivalenzklassenbildung

Äquivalenzklassenbildung (equivalence partitioning)

Ein Black-Box-Testverfahren, bei dem die Testfälle im Hinblick auf die Ausführung von Äquivalenzklassen entworfen werden, wobei von jeder Äquivalenzklasse ein Repräsentant genutzt wird. [ISO 29119]

Bei der Äquivalenzklassenbildung werden die **Definitionsbereiche der Werte** betrachtet

- o Eingabewerte des Programms (übliche Nutzung der ÄK-Methode)
- Ausgabewerte des Programms (seltene Nutzung der ÄK-Methode)

Prinzip der Äquivalenzklassenbildung

- Alle Werte, für die ein identisches Verhalten des Testobjekts erwartet wird, werden zu einer Äquivalenzklasse (ÄK) zusammengefasst
- Äquivalenzklassen dürfen sich nicht überlappen und keine Lücken aufweisen
- o Zerlegung in gültige (gÄK) und ungültige (uÄK) Äquivalenzklassen
- o Werte mit Sonderbehandlung (z. B. nicht numerisch)

Äquivalenzklassenbildung – Beispiel ÄK

1 von 3

Äquivalenzklassen werden für gültige und für ungültige Eingabewerte erstellt

- o Ist der Wert x definiert als 0 ≤ x ≤ 100, ergeben sich daraus zunächst drei Äquivalenzklassen:
 - (1) alle Werte für x zwischen 0 und 100 (gültige ÄK)
 - (2) alle Werte für x > 100 (ungültige ÄK)
 - (3) alle Werte für x < 0 (ungültige ÄK)
- Ferner können für x nicht-numerische Werte eingesetzt werden dies stellt eine weitere mögliche Äquivalenzklasse dar

Getestet wird jeweils nur mit einem Repräsentanten der ÄK

 Man erwartet für jeden anderen Vertreter der Äquivalenzklasse ein identisches bzw. analoges Verhalten

< 0	0 – 100	> 100
-----	---------	-------

Certified Tester Foundation Level

© trendig technology services GmbH

226

IV. Testverfahren »2. Black-Box-Testverfahren

Äquivalenzklassenbildung – Beispiel ÄK

2 von 3

Ein Programm verlangt die Eingabe eines **Prozentwertes** unter den folgenden Rahmenbedingungen

- Nur ganzzahlige Werte (Integer) sind erlaubt
- 0 ist die gültige Untergrenze und 100 die gültige Obergrenze

Gültig sind hier alle Zahlen ≥ 0 und ≤ 100, ungültig sind alle negativen Werte, alle Werte über 100, alle Dezimalwerte sowie nicht numerische Eingaben (z. B. "Null")

o Gültige Äquivalenzklasse: 0 ≤ x ≤ 100

1. ungültige Äquivalenzklasse: x < 0

o 2. ungültige Äquivalenzklasse: x > 100

3. ungültige Äquivalenzklasse: x = kein Integer

o 4. ungültige Äquivalenzklasse: x = nicht-numerisch (n.n.)

< 0 0 - 100 > 100

Äquivalenzklassenbildung – Beispiel ÄK

3 von 3

Der Prozentwert wird in einem Balkendiagramm dargestellt. Zusätzlich gilt nun folgendes (jeweils beide Werte einschließlich):

o Wert zwischen 0 und 15:

grauer Balken

O Wert zwischen 16 und 50:

grüner Balken

o Wert zwischen 51 und 85:

gelber Balken

o Wert zwischen 86 und 100:

roter Balken

Jetzt ergeben sich statt einer gültigen ÄK vier gültige ÄK:

o 1. gültige Äquivalenzklasse:

 $0 \le x \le 15$

o 2. gültige Äquivalenzklasse:

 $16 \le x \le 50$

o 3. gültige Äquivalenzklasse:

 $51 \le x \le 85$

o 4. gültige Äquivalenzklasse:

 $86 \le x \le 100$

< 0	0 – 15	16 – 50	51 – 85	86 – 100	> 100
		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OW	the reaction is a superior of the superior of	Annual Control of the	- Company of the Comp

Certified Tester Foundation Level

© trendig technology services GmbH

238

IV. Testverfahren »2. Black-Box-Testverfahren

Äquivalenzklassenbildung – Repräsentantenauswahl

Abschließend wird für jede ÄK ein Repräsentant gewählt, dies kann jeder beliebige Wert aus der Äquivalenzklasse sein

Folgende Repräsentanten werden gewählt:

Variable	Äquivalenzklasse	Repräsentant
Prozentsatz	ÄK₁: 0 ≤ x ≤ 15	
	$\ddot{A}K_2$: $16 \le x \le 50$	
	ÄK ₃ : 51 ≤ x ≤ 85	
	ÄK₄: 86 ≤ x ≤ 100	
Prozentsatz	ÄK₅: x < 0	
	ÄK ₆ : x > 100	
	ÄK ₇ : x kein Integer	
	ÄK ₈ : x kein numerischer Wert	

Übung IV.1: Äquivalenzklassen

(10 Min. Einzelarbeit / 15 Min. Ergebnisdiskussion)

Aus der gegebenen Spezifikation (Online-Shop – Seite 5 Übungen) sind

- Die Eingabewerte zu bestimmen
- · Äquivalenzklassen für die Eingabe-Wertebereiche zu definieren
 - Gültige Äquivalenzklassen
 - Ungültige Äquivalenzklassen

Certified Tester Foundation Level

© trendig technology services GmbH

240

IV. Testverfahren »2. Black-Box-Testverfahren

Äquivalenzklassenbildung – Vorgehensweise

Beispiel ÄK 2:

 Ein Programmteil berechnet den Preis eines Produkts aus dem Warenwert, einem Rabatt und Versandkosten

Variable	Äquivalenzklasse	Status	Repräsentant
	ÄK ₁₁ : x ≥ 0	Gültig	1000,00
Warenwert	ÄK ₁₂ : x < 0	Ungültig	-1000,00
	ÄK ₁₃ : x kein numerischer Wert	Ungültig	Р
	$\ddot{A}K_{21}$: $0\% \le x \le 100\%$	Gültig	10%
Dahau	ÄK ₂₂ : x < 0%	Ungültig	-10%
Rabatt	ÄK ₂₃ : x > 100%	Ungültig	200%
	ÄK ₂₄ : x kein numerischer Wert	Ungültig	Q
	ÄK ₃₁ : x = 6	Gültig	6
/ersand-	ÄK ₃₂ : x = 9	Gültig	9
kosten	ÄK ₃₃ : x = 12	Gültig	12
	ÄK ₃₄ : x ≠ {6, 9, 12}	Ungültig	4
	ÄK ₃₅ : x kein numerischer Wert	Ungültig	R

Folgende Annahmen:

- Warenwert definiert als positive Zahl mit zwei Nachkommastellen
- Rabatt definiert als Prozentzahl ohne Nachkommastellen von 0% bis 100% jeweils einschließlich
- Für die Versandkosten werden feste Werte geliefert, die 6, 9, oder 12 betragen können

Certified Tester Foundation Level

© trendig technology services GmbH

241

Äquivalenzklassenbildung – positive Testfälle

Aus den **gültigen** Äquivalenzklassen lassen sich folgende Kombinationen bzw. Testfälle (T01, T02 und T03) bilden

Variable	Äquivalenzklasse	Status	Repräsentant	T01	T02	T03
	ÄK ₁₁ : x ≥ 0	Gültig	1000,00	*	*	*
Warenwert	ÄK ₁₂ : x < 0	Ungültig	-1000,00			
	ÄK ₁₃ : x kein numerischer Wert	Ungültig	Р			
	ÄK ₂₁ : 0% ≤ x ≤ 100%	Gültig	10%	*	*	*
	ÄK ₂₂ : x < 0%	Ungültig	-10%			
Rabatt	ÄK ₂₃ : x > 100%	Ungültig	200%			
	ÄK ₂₄ : x kein numerischer Wert	Ungültig	Q			
	ÄK ₃₁ : x = 6	Gültig	6	*		
Varaand	ÄK ₃₂ : x = 9	Gültig	9		*	
Versand- kosten	ÄK ₃₃ : x = 12	Gültig	12			*
	ÄK ₃₄ : x ≠ {6, 9, 12}	Ungültig	4			
	ÄK ₃₅ : x kein numerischer Wert	Ungültig	R			

Certified Tester Foundation Level

© trendig technology services GmbH

242

IV. Testverfahren »2. Black-Box-Testverfahren

Äquivalenzklassenbildung – negative Testfälle

Ungültige ÄK dürfen nur mit gültigen ÄK kombiniert werden (zwecks Vermeidung von Fehlermaskierungen); die Werte der Repräsentanten bleiben unverändert

Variable	Äquivalenzklasse	Status	Repräsentant	T04	T05	T06	T07	T08	T09	T10
da kasini	ÄK ₁₁ : x ≥ 0	Gültig	1000,00			*	*	*	*	*
Warenwert	ÄK ₁₂ : x < 0	Ungültig	-1000,00	*						
	ÄK ₁₃ : x kein numerischer Wert	Ungültig	Р		*					
	ÄK ₂₁ : 0% ≤ x ≤ 100%	Gültig	10%	*	*				*	*
	ÄK ₂₂ : x < 0%	Ungültig	-10%			*				
Rabatt	ÄK ₂₃ : x > 100%	Ungültig	200%				*			
	ÄK ₂₄ : x kein numerischer Wert	Ungültig	Q					*		
	ÄK ₃₁ : x = 6	Gültig	6	*	*	*	*	*		
Versand-	ÄK ₃₂ : x = 9	Gültig	9							
kosten	ÄK ₃₃ : x = 12	Gültig	12							
	ÄK ₃₄ : x ≠ {6, 9, 12}	Ungültig	4						*	
	ÄK ₃₅ : x kein numerischer Wert	Ungültig	R							*

Äquivalenzklassenbildung – Testfälle insgesamt

Es ergeben sich daraus insgesamt 10 Testfälle

3 positive Testfälle und 7 Negativtestfälle

Variable	Status	Repräsentant	T01	T02	T03	T04	T05	T06	T07	T08	T09	T10
	Gültig	1000,00	*	*	*			*	*	*	*	*
Warenwert	Ungültig	-1000,00				*						
	Ungültig	Р					*					
	Gültig	10%	*	*	*	*	*				*	*
Daha#	Ungültig	-10%						*				
Rabatt	Ungültig	200%							*			
	Ungültig	Q								*		
	Gültig	6	*			*	*	*	*	*		
Versand-	Gültig	9		*								
kosten	Gültig	12			*							
	Ungültig	4									*	
	Ungültig	R										*

Certified Tester Foundation Level

© trendig technology services GmbH

244

IV. Testverfahren »2. Black-Box-Testverfahren

Ausgabewerte als Basis für Äquivalenzklassenbildung

Bildung von Äquivalenzklassen auf Basis von Ausgabewerten

- Analog kann das Verfahren auch für eine Unterteilung aller definierten Ausgabewerte eingesetzt werden
- Die Variable (das Element) ist dann eine Ausgabe (z. B. ein Ausgabefeld einer GUI)
- Aus den möglichen definierten Ausgabewerten werden entsprechend wieder Äquivalenzklassen gebildet
 - ÄK umfasst alle Werte, für die ein identisches Ausgabeverhalten unterstellt wird
- Für jede Äquivalenzklasse wird ein Repräsentant gewählt
- Für die Repräsentanten wird abschließend bestimmt, über welche Eingabewerte sie zu erreichen sind

Höherer Aufwand, da Eingabewerte für verschiedene fest definierte Ausgaben gesucht werden müssen

Äquivalenzklassenbildung – Überdeckung

Übergang von Definitionen / Spezifikationen zu Äquivalenzklassen

- o Oft eine schwere Aufgabe, da unpräzise oder lückenhafte Dokumente vorliegen
- Ungenaue Grenzen der Definitionsbereiche oder fehlende Angaben zur genauen Definition erschweren eine Umsetzung
- o Häufig sind hier Rücksprachen mit dem Kunden notwendig

Endekriterium kann ein bestimmter Überdeckungsgrad sein

o Wie viele ÄK sind im Verhältnis zu allen definierten ÄK getestet worden?

Certified Tester Foundation Level

© trendig technology services GmbH

0.40

IV. Testverfahren »2. Black-Box-Testverfahren

Äquivalenzklassenbildung – Repräsentantenauswahl

- Jeder mögliche Wert einer ÄK kann als Repräsentant für den Test herangezogen werden – das können sein
 - Typische Werte (oft genutzte)
 - Problemwerte (vermutete Fehler)
 - o Zufällig ermittelte Werte
- Die Repräsentanten gültiger ÄK dürfen kombiniert werden
- Die Repräsentanten ungültiger ÄK dürfen nicht miteinander kombiniert werden
- Die Repräsentanten ungültiger ÄK dürfen nur mit gültigen Repräsentanten anderer ÄK kombiniert werden (um mögliche Fehlermaskierungen zu vermeiden)
- Die Repräsentanten ungültiger ÄK sollen immer mit den selben gültigen Werten der restlichen ÄK (Standardkombinationen) zu Testfällen vereint werden

Äquivalenzklassenbildung – Fazit

- Systematische Testfallerstellung heißt, mit einer minimalen Anzahl an Testfällen eine hohe Fehlerentdeckungswahrscheinlichkeit erreichen
- Zerlegung in Äquivalenzklassen auf Basis der Definitionen / Spezifikationen erfasst sehr gut die funktionalen Anforderungen
- Eine Priorisierung der Äquivalenzklassen kann dazu dienen, **Testfälle zu priorisieren** (Eingaben, die selten gemacht werden, sind zuletzt zu testen)
- Der Test ungültiger Wertebereiche ist durch die Negativtestfälle sichergestellt
- Äquivalenzklassenbildung ist auf jeder Teststufe einsetzbar

Certified Tester Foundation Level

© trendig technology services GmbH

248

Grenzwertanalyse

1 von :

Grenzwertanalyse (boundary value analysis)
 Ein Black-Box-Testverfahren, bei dem die Testfälle unter Nutzung von Grenzwerten entworfen werden.

Die Grenzwertanalyse **erweitert die Äquivalenzklassenbildung** durch eine **Vorschrift zur Repräsentantenauswahl**

- Randbereiche der Äquivalenzklassen werden intensiver getestet
- Die Grenzwerte sind der größte und der kleinste Wert einer ÄK
- Zum Test verwendet man üblicherweise den exakten Grenzwert und die beiden jeweils benachbarten Werte

Anwendung der Grenzwertanalyse setzt voraus, dass

- o die Äquivalenzklassen numerische Werte oder Wertebereiche umfassen und
- o sich für die Wertebereiche Grenzen aus der Spezifikation identifizieren lassen

Grenzwertanalyse

2 von 3

Die Grenzwertanalyse kann auf **allen** Teststufen angewendet werden. Es ist eine **einfache** und **wirksame** Methode, Fehlerzustände zu finden

Grenzwertüberdeckung misst die Anzahl der getesteten Grenzwerte dividiert durch die Gesamtanzahl der identifizierten Grenzwerte

Certified Tester Foundation Level

© trendig technology services GmbH

250

IV. Testverfahren »2. Black-Box-Testverfahren

Grenzwertanalyse

3 von 3

Getestet wird üblicherweise mit drei Repräsentanten pro Grenze

Vorgehensweise bei 3 Repräsentanten:

Wertebereich: l	Jntergrenze δ	x δ Obergrenze
Untergrenze – δ	Untergrenze	Untergrenze δ
Obergrenze – δ	Obergrenze	Obergrenze δ
δ ist dabei der klei (z. B. 1 wenn ga	inste per Definition nzzahlige Werte d	n mögliche Schritt definiert wurden)

Es gibt Fälle, da reichen zwei und andere, da werden sogar vier Repr. benötigt.

- Beispiel:
 - Wertebereich für den Rabatt in %: 0,00 ≤ x ≤ 100,00
 - o Gültige ÄK: $0,00 \le x \le 100,00$
 - Grenzwertanalyse erweitert die Repräsentanten um:
 -0,01; 0,00; 0,01; 99,99; 100,00; 100,01

251

Entscheidungstabellentests

1 von 9

• Entscheidungstabellentest (decision table testing)
Ein Black-Box-Testverfahren, bei dem Testfälle im Hinblick auf die Ausführung von Kombinationen der Bedingungen einer Entscheidungstabelle entworfen werden.
[Egler63]

Kombinatorische Verfahren testen Systemanforderungen, bei denen unterschiedliche Kombinationen von Bedingungen zu unterschiedlichen Ergebnissen führen

Abhängigkeiten der Eingabewerte werden bei den bisher besprochenen Verfahren nicht berücksichtigt

Die Verwendung aller möglichen Kombinationen der Eingabewerte als Testfälle ist aufgrund der großen Anzahl so entstehender Testfälle meist nicht praktikabel (siehe Begriffsdefinition "Vollständiger Test" und Testfallexplosion in Kap. II 03)

Mittels **Ursache-Wirkungs-Graphen** und daraus abgeleiteten Entscheidungstabellen wird die große Anzahl möglicher Kombinationen auf eine **Untermenge** von Kombinationen systematisch reduziert

Certified Tester Foundation Level

© trendig technology services GmbH

252

IV. Testverfahren »2. Black-Box-Testverfahren

Entscheidungstabellentests

2 von

Ein Ursache-Wirkungs-Graph ist eine formale Sprache

Zur Erstellung eines U-W-G ist die (i. d. R. informelle) Spezifikation des Testobjektes in die formale Sprache zu übersetzen

Die Wirkungen, die am Testobjekt beobachtet werden können, sind auf Ursachen zurückzuführen, die auf das Testobjekt einwirken

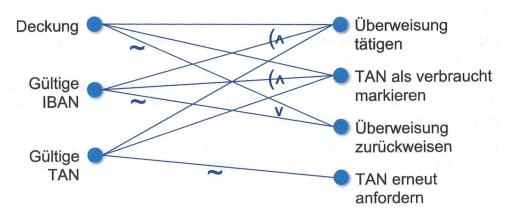
Elemente eines Ursache-Wirkungs-Graphen:

o Identität (Wenn Ursache, dann Wirkung)

o Negierung (Wenn nicht Ursache, dann Wirkung)

o Oder (Wenn Ursache A oder Ursache B, dann Wirkung)

Und (Wenn Ursache A und Ursache B, dann Wirkung)



Entscheidungstabellentests

3 von

Beispiel 5: Online-Banking

Der Benutzer hat sich bereits am System mit seiner Kontonummer und PIN identifiziert. Ausreichende Deckung auf seinem Konto vorausgesetzt, kann er eine Überweisung tätigen. Dazu muss er eine gültige IBAN eingeben, ferner eine gültige TAN erfassen, die durch die Transaktion verbraucht wird

Certified Tester Foundation Level

© trendig technology services GmbH

254

IV. Testverfahren »2. Black-Box-Testverfahren

Entscheidungstabellentests – Beispiel

4 von 9

Bedingung		T-1	T-2	T-3	T-4	T-5
	Deckung vorhanden	ja	ja	nein	ja	ja
Bedingungen (Ursachen)	Gültige IBAN	ja	ja	_	nein	ja
(Ursachen)	Gültige TAN	ja	ja			nein
	Überweisung ausführen	ja	-	-	-	-
Aktionen	TAN als verbraucht markieren	-	ja	a -	250 - 010	-
(Wirkungen)	Überweisung zurückweisen	-	- 33	ja	ja	
	TAN erneut anfordern	-	-	-	_	ja

Jede Spalte der Tabelle ergibt einen Testfall

Aufbau der Entscheidungstabelle:

- Auswahl einer Wirkung
- Durchlaufen des Graphen "nach vorn", Ermittlung relevanter Ursachen
- Je gefundener Kombination von Ursachen wird eine Spalte (Testfall) in der Entscheidungstabelle eingerichtet
- Ggf. zusammenführen von identischen Ursachenkombinationen, die auf unterschiedliche Wirkungen führen (s. T1 und T2)

Entscheidungstabellentests – Beispiel

5 von 9

Bedingung		T-1	T-2	T-3	T-4	T-5
Da dia au	Deckung vorhanden	ja	ja	nein	ja	ja
Bedingungen (Ursachen)	Gültige IBAN	ja	ja		nein	ja
(Grodorien)	Gültige TAN	ja	ja	-		nein
	Überweisung ausführen	ja	Pi-11	-	_	
Aktionen (Wirkungen)	TAN als verbraucht markieren		ja	- 1	_	_
(vviikurigeri)	Überweisung zurückweisen	-	-	ja	ja	
	TAN erneut anfordern				<u>.</u>	ja

Jede Spalte der Tabelle ergibt einen Testfall

Aufbau der Entscheidungstabelle:

- · Auswahl einer Wirkung
- Durchlaufen des Graphen "nach vorn", Ermittlung relevanter Ursachen
- Je gefundener Kombination von Ursachen wird eine Spalte (Testfall) in der Entscheidungstabelle eingerichtet
- Ggf. zusammenführen von identischen Ursachenkombinationen, die auf unterschiedliche Wirkungen führen (s. T1 und T2)

Certified Tester Foundation Level

© trendig technology services GmbH

256

Übung IV.2: Entscheidungstabellentests

6 von 9

(20 Min. gemeinsame Erarbeitung)

Der Besuch im Zoo

Als Tierpfleger im Krefelder Zoo sind Sie für die Betreuung der Nashornbabys Davu und Thabo zuständig

Es gibt einige Regeln für die Besuche:

- Besucher mit ansteckenden Krankheiten dürfen gar nicht zu den Tieren
- Besucher außerhalb der Besuchszeiten dürfen nur für max. 15 Min. nach vorheriger Anmeldung zu den Tieren
- Besucher in großen Gruppen dürfen nur mit einem Pfleger zu den Tieren

Die **Regeln** sind der **Wichtigkeit** nach angeordnet. In Abhängigkeit von den **Ursachen** werden die (ggf. kombinierten) **Wirkungen** ermittelt

Entscheidungstabellentests

7 von 9

Einsatz in der Praxis

- Testfälle, die aus dem Entscheidungstabellentest resultieren, können mit Testfällen kombiniert werden, die aus einer separat durchgeführten Grenzwertanalyse stammen
- Je mehr Ursachen / Wirkungen berücksichtigt werden, desto größer wird die zugehörige Entscheidungstabelle und somit die Zahl der potenziellen Testfälle (2ⁿ mögliche Testfälle bei n (atomaren) Bedingungen, die jeweils wahr oder falsch sein können). Ohne Toolunterstützung ist diese Methode für größere Systeme schwer handhabbar. Deswegen muss die Spezifikation in überschaubare Stücke aufgeteilt sein
- Durch Löschung von Kombinationen, die das Ergebnis nicht beeinflussen (z.B. unmögliche Kombinationen) kann die Anzahl der Testfälle reduziert werden
- Alle wichtigen Kombinationen von Bedingungen k\u00f6nnen identifiziert werden. Das hilft dabei, m\u00f6gliche L\u00fccken in den Anforderungen zu finden
- Entscheidungstabellen sind auf jeder Teststufe auf alle Situationen angewendet werden, Kombinationen von Bedingungen stehen im Fokus

Certified Tester Foundation Level

© trendig technology services GmbH

259

IV. Testverfahren »2. Black-Box-Testverfahren

Entscheidungstabellentests

8 von 9

Vorteile

- Systematische Ermittlung von Eingabekonstellationen/Ursachenkombinationen, die mit anderen Testverfahren nicht gefunden werden
- Einfache Herleitung von Testfällen direkt aus der resultierenden Entscheidungstabelle
- Überdeckung wird gemessen, Anzahl der durchgeführten Tests in Relation zu der Gesamtanzahl der Überdeckung aller Spalten der resultierenden Entscheidungstabelle durch mindestens einen Testfall
- Reduzierung der Testfallanzahl durch systematisches Zusammenschieben von Spalten der Entscheidungstabelle möglich

Nachteile

- Bei Berücksichtigung vieler Ursachen komplexe und umfangreiche Resultate, daher hohes Fehlerpotenzial
- o Dies macht einen Werkzeugeinsatz erforderlich

Entscheidungstabellentests – Testüberdeckung

9 von 9

- Die minimale Testüberdeckung ist ein Test pro Spalte, unter der Voraussetzung, dass in der Spalte alle möglichen Kombinationen von Bedingungen berücksichtigt werden
- Durch die Berücksichtigung von Grenzbedingungen kann sich die Anzahl der Testfälle deutlich erhöhen
- Grenzwertanalyse und ÄK sind hierbei ergänzende Testverfahren
- Gemessen werden die überdeckten Kombinationen von Bedingungen in Relation zu der Gesamtanzahl der Kombinationen von Bedingungen

E-Tabellenüberdeckung in % =

Überdeckte Kombinationen von Bedingungen Gesamtanzahl Kombination von Bedingungen

× 100

Certified Tester Foundation Level

© trendig technology services GmbH

260

Zustandsübergangstest

1 von 6

 Zustandsübergangstest (state transition testing)
 Ein Black-Box-Testverfahren, bei dem Testfälle aus Zustandsdiagrammen oder Zustandstabellen abgeleitet werden, um zu bewerten ob das Testelement gültige Zustandsübergänge erfolgreich ausführt und ungültige Übergänge verhindert.

Die drei bisher bekannten Verfahren berücksichtigen nur das Ein- / Ausgabeverhalten laut Spezifikationen

Verschiedene **Zustände**, die ein Testobjekt während seiner Ausführung annehmen kann, bleiben außer Betracht

Haben bereits erfolgte Vorgänge Auswirkungen auf den weiteren Verlauf?

Die verschiedenen Zustände, die ein Testobjekt während seiner Ausführung einnehmen kann, werden in **Zustandsmodell**en abgebildet

Die Ermittlung von zustandsbezogenen Testfällen wird auch als **Zustandsübergangsanalyse** bezeichnet

Übung IV.3: Zustandsübergangstest

2 von 6

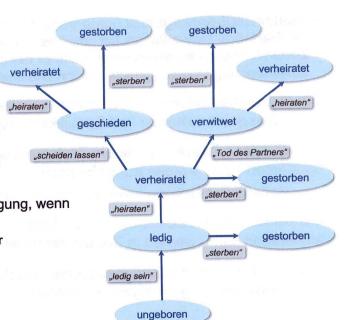
(10 Min. Gruppenarbeit)

- Ein Zustandsübergangsdiagramm für die möglichen unterschiedlichen Familienstände aus Sicht eines deutschen Standesamtes wird erarbeitet
- Die Umformung des Diagrammes in einen Zustandsbaum wird gemeinsam durchgeführt

Certified Tester Foundation Level

© trendig technology services GmbH

262


IV. Testverfahren »2. Black-Box-Testverfahren

Zustandsübergangstest

Erstellung der Testfälle erfolgt mittels **Übergangsbaumes** nach folgender Regel

- Der Anfangszustand ist die Wurzel des Baumes
- Für jeden möglichen Folgezustand wird jeweils ein Knoten gebildet und mit dem Vorzustand über eine Kante verbunden
- o Beendet wird die weitere Verzweigung, wenn
 - der Zustand des Knotens ein Endzustand (d. h. Blatt) ist, oder
 - der Zustand des Knotens bereits im Baum enthalten ist

263

Zustandsübergangstest

4 von 6

G

W

G

S

H

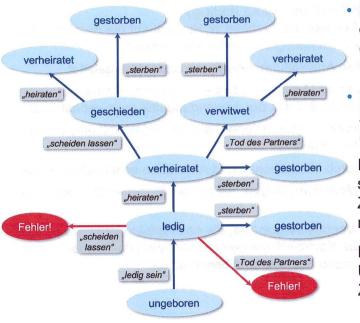
- Im Zustandsbaum stellt jeder mögliche Weg von der Wurzel zu einem Blatt einen Testfall des zustandsbezogenen Tests dar
- Aus dem Zustandsbaum für das Beispiel ergeben sich die Testfälle der abgebildeten Tabelle

TF	Zustand 1	Zustand 2	Zustand 3	Zustand 4	Zustand 5	Endzustand
t1	ungeboren	ledig	gestorben			gestorben
t2	ungeboren	ledig	verheiratet	gestorben		gestorben
t3	ungeboren	ledig	verheiratet	verwitwet	gestorben	gestorben
t4	ungeboren	ledig	verheiratet	verwitwet	verheiratet	verheiratet
t5	ungeboren	ledig	verheiratet	geschieden	gestorben	gestorben
t6	ungeboren	ledig	verheiratet	geschieden	verheiratet	verheiratet

Certified Tester Foundation Level

© trendig technology services GmbH

264


G

IV. Testverfahren »2. Black-Box-Testverfahren

${\bf Zustand s\"ubergang stest-Zustand s\"ubergang sbaum:}$

5 von 6

- Der Zustandsbaum kann um die ungültigen Funktionen erweitert werden (Test auf Robustheit des Testobjektes)
- Für den erweiterten
 Zustandsbaum lassen sich
 analog die Testfälle erstellen

Im Bild: zwei Beispiele für spezifikationswidrige Zustandsübergänge – es gibt noch mehr...

Nicht definierte (ungültige) Übergänge zwischen Zuständen sind nicht testbar

Zustandsübergangstest

6 von 6

- Zustandsübergangstest wird eingesetzt für
 - o "embedded" Software und in der Automatisierungstechnik
 - o Modellerstellung eines Geschäftsszenarios mit spezifischen Zuständen
 - Bildschirmnavigation
- Überdeckung
 - Anzahl getesteter Zustände in Relation zu der Gesamtanzahl der Zustände
 - o Anzahl getesteter Zustandsübergänge in Relation zu allen Zustandsübergängen
- Zustandsübergänge
 - o Ein Übergang wird durch ein Ereignis hervorgerufen (Benutzereingabe)
 - Führt das gleiche Ereignis zu zwei oder mehreren Übergängen aus einem Zustand, dann führt man dafür eine Schutzbedingung (guard condition) ein

Certified Tester Foundation Level

© trendig technology services GmbH

266

Anwendungsfallbasierter Test

1 von 8

- Anwendungsfallbasierter Test (use case testing)
 Ein Black-Box-Testverfahren, bei dem die Testfälle im Hinblick auf die Ausführung verschiedener Verhalten eines Anwendungsfalls entworfen werden
 - Die Testfälle werden aus den Anwendungsfällen (use cases) hergeleitet
 - Anwendungsfälle haben Akteure (Anwender, Systeme, externe Hardware) und Objekte (Komponente, System), auf das der Anwendungsfall angewendet wird
 - Ein Anwendungsfall beschreibt die Interaktionen, die ein Objekt mit einem oder mehreren Akteuren ausführen kann
 - Anwendungsfälle können durch Interaktionen und Aktivitäten beschrieben werden
 - Jeder Anwendungsfall hat Vorbedingungen, die zur erfolgreichen Durchführung erfüllt sein müssen
 - Jeder Anwendungsfall hat Nachbedingungen, die nach erfolgreicher vollständiger Durchführung herrschen. Die Nachbedingungen können auch die beobachtbaren Ergebnisse und den Endzustand des Systems beschreiben

Anwendungsfallbasierter Test

2 von

Anwendungsfälle

- Es werden meistens ein Hauptszenario und alternative Szenarien oder Varianten dargestellt
- Anwendungsfälle können auf abstrakter Ebene, wie fachlicher Anwendungsvorfall, technologiefrei, Geschäftsprozessebene, aber auch auf Systemebene beschrieben werden, die die Systemfunktionalität als Systemanwendungsfall beinhaltet
- Ein Anwendungsfall besteht aus mehreren möglichen Varianten seines grundlegenden Verhaltens
- Sonder- und Fehlerbehandlung (Wiederherstellungsverfahren, alles, was zu Fehlermeldungen führt) werden beschrieben
- Die Tests sollen das definierte Verhalten nachweisen

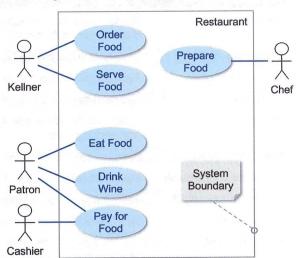
Überdeckung

 Anteil der getesteten Anwendungsvarianten in Relation zu der Gesamtanzahl der ermittelten Anwendungsvarianten in Prozent

Certified Tester Foundation Level

© trendig technology services GmbH

268


IV. Testverfahren »2. Black-Box-Testverfahren

Anwendungsfallbasierter Test - Beispiel

3 von

UML - Use-Case-Diagramm (Anwendungsfall-Diagramm)

UML steht für *Unified Modeling Language*, einem weltweiten Industriestandard.

Verantwortlich für die Sprachdefinition zeichnet sich das Softwarekonsortium *Object Management Group (OMG).*

Sie entstand 1995 als Synthese einzelner Notationen der drei Amigos, Grady Booch (Firma Rational), James Rumbaugh und Ivar Jacobson.

Seit 1997 liegt die Verantwortung für die UML bei der OMG.

Anwendungsfallbasierter Test

- Jeder Anwendungsfall beschreibt eine bestimmte Aufgabe (Nutzer-System-Interaktion), die mit dem System bearbeitet wird
- Beschreibungselemente eines Anwendungsfalles sind u. a.
 - Vorbedingungen
 - Vorausgesagte Ergebnisse / Verhaltensweisen des Systems
 - Nachbedingungen
- Dieselben Beschreibungselemente werden auch für Testfälle benötigt!
- Aus jedem Anwendungsfall lässt sich mindestens ein Testfall konstruieren
- Die typische Diagrammnotation ist f
 ür eine direkte Testfallermittlung zu wenig konkret. Eingabewerte und vorausgesagte Ergebnisse für die Testfälle müssen im Detail festgelegt werden
- Für jede im Diagramm enthaltene Alternative ist ein eigener Testfall vorzusehen

Certified Tester Foundation Level

© trendig technology services GmbH

270

IV. Testverfahren » 2. Black-Box-Testverfahren

Anwendungsfallbasierter Test – Beispiel: Use-Case-Spez. 5 von 8

Strukturelement	Erläuterung
Bezeichnung	Name, Kurzbeschreibung, ID,; Bezeichner sollte ein VERB enthalten und eindeutig sein
Beteiligte Akteure	Die an dem konkreten Use Case beteiligten Akteure
Vorbedingungen	Ausgangssituation, bevor der Anwendungsfall eintritt
Auslöser	Wie wird der Ablauf des Anwendungsfalls gestartet?
Ergebnis	Prüfbares Ergebnis des Anwendungsfall (Zielstellung des Anwendungsfalls)
Nachbedingung	Zustand des Systems, nach dem der Anwendungsfall ausgeführt wurde
Ablaufbeschreibung	Beschreibung des Ablaufs, ggf. nummeriert
Alternativer Ablauf	Beschreibung von Ausnahmen zum 'normalen' Ablauf
Ausnahmen	Beschreibung von möglichen Ausnahme- und Fehlersituationen
Dialogbeispiele	GUI-Mocks, Maskenentwürfe können die Abläufe für den Leser nachvollziehbarer machen

Anwendungsfallbasierter Test – Beispiel

6 von 8

Attribut	Beschreibung			
Name des Anwendungsfalls	Geld mit/ohne Beleg beziehen			
Kurzbeschreibung	Der Kunde kann einen frei wählbaren Betrag (im Rahmen seines Limits) in EUR mit oder ohne Ausdruck eines Belegs beziehen.			
Hauptszenario	 Der Kunde wählt die Dienstleistung 'Barbezug EUR'. Je nach Tages(rest)limit und Noten-Verfügbarkeit werden dem Kunden verschiedene, vordefinierte Beträge und die Option, einen anderen Betrag einzugeben, angeboten. Der eingegebene Betrag wird vom System autorisiert. Verbuchung der Transaktion im System. Der Kunde kann die Notenstückelung wählen, falls vorhanden. Der Kunde wird gefragt, ob er einen Beleg wünscht. Wünscht der Kunde einen Beleg, wird er gebeten, den Beleg und anschließend die Karte und den entsprechenden Betrag zu entnehmen. Wünscht der Kunde keinen Beleg wird er gebeten die Karte und anschließend den entsprechenden Betrag zu entnehmen. Es erscheint das 'Danke für Ihren Besuch' Fenster und anschließend das Grundbild. 			
Varianten	 Die Interaktion ist beendet. 3a. Der gewünschte Betrag kann nicht ausgezahlt werden, da das Tages(rest)limit überschritten ist. Der Kunde kann einen anderen Betrag wählen. 4a. Bei Überziehung des Kontos (d.h. Bezugsbetrag ist grösser als 'Aktueller Saldo') erfolgt eine Warnmeldung. Bei Abbruch aufgrund der Warnmeldung gelangt der Kunde zurück zum Fenster Betragswahl. 			
Vorbedingung Nachbedingung	Der Kunde wurde erfolgreich authentifiziert (Anwendungsfall "Karte und PIN eingeben"). Der Kunde hat den gewählten Betrag in EUR und auf Wunsch einen Beleg erhalten. Die Karte wurde dem Kunden zurückgegeben.			

Certified Tester Foundation Level

© trendig technology services GmbH

272

IV. Testverfahren »2. Black-Box-Testverfahren

Anwendungsfallbasierter Test – Beispiel

7 von 8

Testfall	Beschreibung	Anwendungsfall	Ziel	Vorbedingungen / Eingabedaten	Erwartete Ergebnisse
001	Hauptszenario – ohne Beleg	Geld mit/ohne Beleg beziehen	Gewählter Betrag ausbezahlt	Tages(rest)limit: 1000 Aktueller Saldo: 2000 Betrag: 500 Notenstückelung: 5 x 100 Beleg: nein	erfolgreich
002	Hauptszenario – mit Beleg	Geld mit/ohne Beleg beziehen	Gewählter Betrag ausbezahlt – Beleg gedruckt	Tages(rest)limit: 1000 Aktueller Saldo: 2000 Betrag: 500 Notenstückelung: 5 x 100 Beleg: ja	erfolgreich
003	Alternative 3a: Tages(rest)limit überzogen	Geld mit/ohne Beleg beziehen	Warnmeldung "Tageslimit überzogen"	Tages(rest)limit: 400 Aktueller Saldo: 2000 Betrag: 500	Kein Bezug, zurück zu Betragswahl
004	Alternative 4a: Überziehung des Kontos	Geld mit/ohne Beleg beziehen	Warnmeldung "Kontoüberzug"	Tages(rest)limit: 1000 Aktueller Saldo: 400 Betrag: 500	Kein Bezug, zurück zu Betragswahl

Anwendungsfallbasierter Test

8 von 8

- Fazit
 - Anwendungsfälle (Szenarien) beschreiben die "Prozessabläufe" durch das System auf Grundlage seiner tatsächlichen Verwendung. Daraus abgeleitete Testfälle decken Fehlerzustände in den Prozessabläufen auf. Das Zusammenwirken und die gegenseitige Beeinflussung unterschiedlicher Komponenten kann im Integrationstest getestet werden
- Vorteile
 - Gut geeignet für Abnahmetests und Systemtests, da die Anwendungsfälle die Einsatzszenarien der Anwender gut wiedergeben
 - Gut geeignet, wenn die Spezifikation des Systems bereits mit UML oder Ablaufbeschreibungen vorgenommen wurde
- Nachteile
 - Keine Herleitung zusätzlicher Testfälle über die dargestellten Anwendungsfälle hinaus
 - o Daher Ergänzung mit anderen Testverfahren notwendig

Certified Tester Foundation Level

© trendig technology services GmbH

274

IV. Testverfahren »2. Black-Box-Testverfahren

Black-Box-Testverfahren – Fazit

- Prüfung der Funktionalität als Ziel der Black-Box-Testverfahren, die Analyse erfolgt auf Basis der Anforderungen / Spezifikationen
 - Dabei ist das Testergebnis von der Qualität der Spezifikationen abhängig (z. B. fehlerhafte / unvollständige Spezifikationen)
 - Liegen in der Spezifikation Fehlerzustände vor, wird auch fehlerhaft getestet getestet wird die beschriebene Funktionalität
 - Enthält das Testobjekt Funktionen, die nicht spezifiziert wurden, bleiben diese unentdeckt
 - Problematisch werden solche nicht geforderten Eigenschaften dann, wenn sie zu Stabilitäts- oder Sicherheitsproblemen führen können, z. B. Steuerung eines Geldautomaten
- Korrekte Funktionalität hat einen hohen Stellenwert unter den Qualitätsmerkmalen, daher haben sie eine hohe Priorität
- · Die interne Struktur wird nicht betrachtet

Zusammenfassung

- Black-Box-Testverfahren
 - Äquivalenzklassenbildung
 - Grenzwertanalyse
 - o Ursache-Wirkungs-Graphen und Entscheidungstabellentests
 - Zustandsübergangstest
 - Anwendungsfallbasierter Test (Systemtest, Abnahmetest, Integrationstest)
- Getestet wird bei Black-Box-Testverfahren (nur) gegen die Spezifikation, d.h. was nicht spezifiziert ist, wird nicht getestet
- Überflüssiger Code im System wird mit Black-Box-Testverfahren nicht gefunden

Certified Tester Foundation Level

© trendig technology services GmbH

276

IV. Testverfahren » Agenda

Kapitel IV - Testverfahren

- IV/1 Kategorien von Testverfahren
- IV/2 Black-Box-Testverfahren
- IV/3 White-Box-Testverfahren
- IV/4 Erfahrungsbasierte Testverfahren

Allgemeines

Dynamische Testverfahren werden in zwei Kategorien unterteilt

 Black-Box-Testverfahren testen nur, was spezifiziert ist, da Testfälle aus der Spezifikation hergeleitet werden

 White-Box-Testverfahren testen, was da ist, da die Überdeckung des vorhandenen Codes gemessen wird (Codeüberdeckung)

Certified Tester Foundation Level

© trendig technology services GmbH

278

IV. Testverfahren »3. White-Box-Testverfahren

Unterschiedliche White-Box-Testverfahren

Strukturorientierter Test betrachtet die interne Struktur des Testobjekts

- o Komponentenebene: codebasiert, die Struktur der Softwarekomponente
- o Integrationsebene: Schnittstellen, die Struktur des Aufrufgraphen
- Systemebene: die Struktur des Menüs, der Geschäftsprozesse oder auch der Websites

Folgende White-Box-Testverfahren werden nun vertieft

- Anweisungstest und -überdeckung
- o Entscheidungstest und -überdeckung
- o (Pfadüberdeckung)
- o (Bedingungsüberdeckung)

White-Box-Testverfahren – Werkzeuge

1 von 2

Bei den kontrollflussorientierten Verfahren geht es – wie bei den Black-Box Testverfahren – darum, **Programmteile auszuführen**

 Theoretisch sollten alle Teile des Programms während der Tests mindestens einmal ausgeführt worden sein

Die Ausführung wird anhand von **Werkzeugen** (z. B. mit Hilfe von **Überdeckungsanalysatoren**) nachvollzogen

- Es wird eine Instrumentierung durchgeführt d. h. es werden Zähler an entsprechenden Stellen des Testobjektes installiert
- Diese Zähler stehen zu Beginn der Programmausführung auf Null und werden mit jeder Ausführung des Programmteils stufenweise erhöht
- Bleiben Zähler am Testende auf Null bedeutet dies, dass der Programmteil nicht zur Ausführung gekommen ist

Certified Tester Foundation Level

© trendig technology services GmbH

280

IV. Testverfahren »3. White-Box-Testverfahren

White-Box-Testverfahren – Werkzeuge

2 von 2

White-Box-Testverfahren benötigen in vielen Bereichen eine Unterstützung durch Werkzeuge – z. B. bei der

- Testfallerstellung
 - Z. B. Ableitung von Kontrollflussgraphen aus dem Programmcode
- Testdurchführung
 - Tools zur Überwachung und Steuerung der Abläufe innerhalb des Testobjektes

Der **Werkzeugeinsatz** stellt an dieser Stelle die Testqualität sicher und steigert die Effizienz

- Aufgrund der Komplexität der Vorgänge ist eine manuelle Ausführung
 - Zeit- und ressourcenverschlingend
 - Fehleranfällig und nur schwer durchführbar

Überdeckungsarten

Anweisungsüberdeckung (statement coverage)

Der Anteil der Anweisungen, die durch eine Testsuite ausgeführt wurden, bezogen auf alle Anweisungen

• Entscheidungsüberdeckung (decision coverage)

Der Anteil an Entscheidungsausgängen, die durch eine Testsuite geprüft wurden. 100% Entscheidungsüberdeckung schließt sowohl 100% Zweigüberdeckung als auch 100% Anweisungsüberdeckung ein

Pfadüberdeckung (path coverage)

Der Anteil der vollständigen Pfade, die durch eine Testsuite ausgeführt wurden

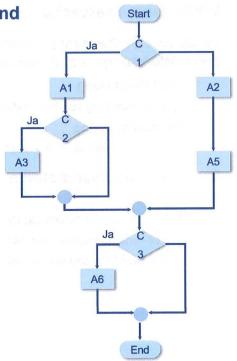
• Bedingungsüberdeckung (condition coverage)

Der Anteil der Teilbedingungsergebnisse, die durch eine Testsuite ausgeführt worden sind. 100% Bedingungsüberdeckung bedeutet, dass jede atomare Teilbedingung in jeder Entscheidung mindestens einmal mit True und einmal mit False ausgeführt wurde

Certified Tester Foundation Level

© trendig technology services GmbH

282



Übung IV.4: Anweisungsüberdeckung und Entscheidungsüberdeckung / Beispiel 1

(10 Min. gemeinsame Erarbeitung am Flipchart)

```
Start
If C1 > 0 then
do A1
if C2 < 5 then
do A3
endif
else
do A2
do A5
endif
If C3 = C1 then
do A6
endif
End
```


28

Anweisungstest und -überdeckung (statement coverage)

- Basis der Untersuchungen ist der Kontrollflussgraph
 - Alle Anweisungen werden als Knoten und der Kontrollfluss zwischen den Anweisungen wird in Form der Kanten dargestellt
 - Mehrere aufeinander folgende Anweisungen sind in einem Knoten zusammengefasst, da sie direkt nacheinander ablaufen
- Die einzelnen Anweisungen eines Programms bzw. deren Ausführung stehen im Mittelpunkt der Betrachtung
- Ziel des Tests ist die Ausführung eines vorher bestimmten Anteiles aller Anweisungen (Anweisungs-Überdeckungsmaß oder C₀ Maß)

$$C_0$$
 (in %) = $\frac{Anzahl \ ausgeführter \ Anweisungen}{Gesamtzahl \ Anweisungen} \times 100$

Certified Tester Foundation Level

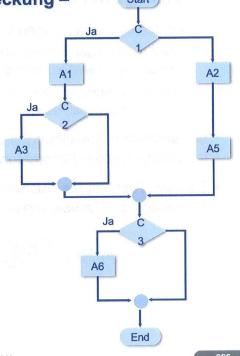
© trendig technology services GmbH

294

IV. Testverfahren »3. White-Box-Testverfahren

Entscheidungstest und -überdeckung (decision coverage)*

- Statt der Anweisungen steht der Kontrollfluss im Mittelpunkt der Auswertung (nicht nur Knoten, sondern auch Kanten)
 - o Welche Testfälle sind nötig, um alle Kanten zu durchlaufen?
- Ziel des Tests ist die Ausführung eines vorher bestimmten Anteiles aller Entscheidungen (Entscheidungsüberdeckungsmaß oder C₁ Maß)


$$C_1$$
 (in %) = $\frac{Anzahl \ ausgeführter \ Entscheidungen}{Gesamtzahl \ Entscheidungen} \times 100$

^{*} Ähnlich: Zweigüberdeckung (engl. branch coverage)

Anweisungs- und Entscheidungsüberdeckung -**Beispiel**

- · Die Wege durch alle Anweisungen des Kontrollflusses wären:
 - o Start, C1, A1, C2, A3, C3, A6, End
 - o Start, C1, A2, A5, C3, A6, End
- Die Wege durch alle Entscheidungen des Kontrollflusses wären:
 - o Start, C1, A1, C2, A3, C3, A6, End
 - o Start, C1, A1, C2, C3, A6, End
 - Start, C1, A2, A5, C3, End

Certified Tester Foundation Level

© trendia technology services GmbH

IV. Testverfahren » 3. White-Box-Testverfahren

Beitrag von Anweisungs- und Entscheidungstests

- Die Entscheidungsüberdeckung führt i. d. R. zu mehr Testfällen als die Anweisungsüberdeckung
 - o Eine 100%ige Anweisungsüberdeckung ist in der 100%igen Entscheidungsüberdeckung enthalten!
 - o Einige Kanten können mehrfach durchlaufen werden
- Schleifen werden einmal durchlaufen und führen zu keinem zusätzlichen Testfall
- Fehlerzustände im Code
 - o Anweisungsüberdeckung kann Fehlerzustände finden, die mit anderen Tests nicht gefunden werden
 - o Entscheidungsüberdeckung kann Fehlerzustände finden, deren Ausgänge (wahr / falsch) mit anderen Tests nicht ausgeführt werden

Übung IV.5, 6, 7: Abdeckungsmessung

(10 Min. Einzelarbeit / 15 Min. Ergebnisdiskussion)

Aus gegebenem Kontrollflussgraphen bzw. Pseudo Code sind:

- Die minimale Anzahl Testfälle für 100% Überdeckung zu bestimmen
 - o Anweisungsüberdeckung
 - Entscheidungsüberdeckung
 - o Pfadüberdeckung

288

IV. Testverfahren »3. White-Box-Testverfahren

Überdeckungsmessungen – Übersichtstabelle

Methode	Maß	erfüllte Bedingung	Durchführbarkeit
Anweisungsüberdeckung	C ₀	jede Anweisung wird mind. einmal ausgeführt	relativ einfach
Zweig-/Entscheidungs- überdeckung	C ₁	jede Kante wird mind. einmal durchlaufen	vertretbarer Aufwand
Pfadüberdeckung vollständig	C _{2a}	alle möglichen Pfade werden durchlaufen	unmöglich bei Schleifen
Einfachbedingung	C _{3a}	jede atomare Bedingung einmal true und false	einfach
Mehrfachbedingung	Сзь	jede true / false Bedingung der atomaren Bedingung wird getestet	sehr hoher Aufwand
Definierter Bedingungstest	C _{3c}	jede atomare und jede Gesamtbedingung wird einmal true und false getestet	hoher Aufwand

Zusammenfassung:

- Strukturorientierte oder White-Box-Testverfahren messen
 - Anweisungsüberdeckung
 - Entscheidungsüberdeckung
- Der Einsatz von Werkzeug gestützter Überdeckungsmessung findet vornehmlich auf den unteren Entwicklungsebenen wie Komponenten- und Integrationstest statt
- Das Konzept der Überdeckung lässt sich auch auf anderen Teststufen anwenden
 - Integrationstest Anteil von Modulen, Komponenten oder Klassen, die durch eine Testsuite ausgeführt wurden
 - Systemtest Überdeckung der Webseiten-Navigation, von Menüpunkten oder Funktionen
 - Abnahmetest Überdeckung der Abläufe der Geschäftsprozesse

Certified Tester Foundation Level

© trendig technology services GmbH

200

IV. Testverfahren » Agenda

Kapitel IV – Testverfahren

- IV/1 Kategorien von Testverfahren
- IV/2 Black-Box-Testverfahren
- IV/3 White-Box-Testverfahren
- IV/4 Erfahrungsbasierte Testverfahren

Allgemeines

Systematische und erfahrungsbasierte Verfahren ergänzen sich

 Testfallermittlung ohne systematische Vorgehensweise auf Basis individueller Erfahrungen des Testers

Testfälle beruhen auf Intuition und Erfahrung

- Wo sind in der Vergangenheit Fehlerzustände aufgetreten?
- Wo könnten weitere Fehlerzustände auftreten?

Überdeckung schwer oder gar nicht messbar

Certified Tester Foundation Level

© trendig technology services GmbH

201

Grundlagen

Bei der Anwendung von erfahrungsbasierten Testverfahren werden die Testfälle aus den Kenntnissen und der Intuition des Testers heraus entwickelt, sowie aus seiner Erfahrung mit ähnlichen Anwendungen und Technologien Diese Verfahren können Testfälle identifizieren, die durch andere systematische Verfahren nicht so leicht zu identifizieren wären. Wird meist zur Ergänzung bereits vorhandener Testfälle genutzt

- Nicht ausreichend für das systematische Testen
- Ergibt aber oft zusätzliche Testfälle, die nicht über andere Verfahren zu erstellen sind, z. B.
 - Eingabe eines Schaltjahres nach 2060 (hier gab es früher mal Probleme)
 - Leere Menge in Eingabewerten (hier hatte ein ähnliches Programm einen Fehler)

Intuitive Testfallermittlung

1 von 2

Intuitive Testfallermittlung (error guessing)
 Ein Testverfahren, bei dem Tests auf Basis des Wissens der Tester über frühere
 Fehlerwirkungen oder allgemeines Wissen über Fehlerauswirkungen abgeleitet werden.
 [ISO 29119]

Dieses Verfahren basiert auf der Vermutung vom Auftreten von Fehlhandlungen, Fehlerzuständen und Fehlerwirkungen, das in Testfälle umgesetzt wird

- o Intuition Wie hat die Anwendung früher funktioniert?
 - Intuition zeichnet einen guten Tester aus
 - Evtl. ein Vorgänger der Software oder ein in den Funktionen entsprechendes System
- o Erfahrungen Wo waren in der Vergangenheit oft Fehlerwirkungen?
 - Testergebnisse und Praxiserfahrungen mit ähnlichen Systemen
 - Alternativ können Listen mit wiederkehrenden Fehlerwirkungen herangezogen werden
- Wissen / Kenntnis Wo speziell sind hier Fehlerzustände zu erwarten?
 Spezielle Details zum Projekt fließen ein, z.B. Entwicklungsschwierigkeiten
 - Wo sind aufgrund des Zeitdruck oder der Komplexität erhöhte Fehlerzahlen zu erwarten?
 - Programmerstellung durch unerfahrenen Mitarbeiter

Certified Tester Foundation Level

© trendig technology services GmbH

294

IV. Testverfahren »4. Erfahrungsbasierte Testverfahren

Intuitive Testfallermittlung – methodischer Ansatz

2 von 2

- Erstellen von Listen*, aus denen Testfälle entworfen werden
 - o Mögliche / bekannte Fehlhandlungen → Fehlhandlungslisten
 - o Mögliche / bekannte Fehlerzustände → Fehlerzustandslisten
 - \circ Mögliche / bekannte Fehlerwirkungen ightarrow Fehlerwirkungslisten
- Mögliche Quellen
 - Erfahrungen über Fehlerzustände
 - Allgemeine Kenntnisse über ähnliche Systeme
 - Allgemeine Kenntnisse, warum Software fehlschlägt
 - o Bekannte, in der Vergangenheit aufgetretene Fehlerwirkungen
 - Austausch von Erfahrungen hinsichtlich der Software in Anwenderkreisen

^{*} Intuitive Testfallspezifikationen

Exploratives Testen

1 von

 Exploratives Testen (exploratory testing)
 Ein Testansatz bei dem die Tester, basierend auf ihrem Wissen, der Erkundung des Testelements und dem Ergebnis früherer Tests, dynamisch Tests entwerfen und durchführen. (ISO 29119)

Vorgehensweise

- Erforschung der einzelnen Teile des Testobjektes anhand einer Test-Charta
- Ausführen weniger Testfälle, die sich auf die zu testenden Teile beschränken, dabei Einsatz von Error Guessing
- Analyse der Testergebnisse, dabei Erarbeitung eines groben Modells der Wirkungsweise des Testobjekts
- Iteration: Entwurf neuer Testfälle, dabei Nutzung des soeben erworbenen zusätzlichen Wissens um das Testobjekt
- Konzentration auf Auffälligkeiten bei der Durchführung der Testfälle sowie auf Erkundung weiterer Eigenschaften des Testobjekts
- Mitschnittwerkzeuge zur Protokollierung der Testaktivitäten nützlich

Certified Tester Foundation Level

© trendig technology services GmbH

296

IV. Testverfahren »4. Erfahrungsbasierte Testverfahren

Exploratives Testen

2 von 2

Iteratives Vorgehen

- Kick-Off
 - o Festlegen der neuen Testziele
- Vorbereitung
- Prüfung der Rahmenbedingungen (HW, SW, etc.)
- Durchführung
 - "Entdecken" und "Erforschen" des Testobjektes während einer begrenzten Dauer (0.5 bis 2 Stunden)
- Abschluss
- Sammeln und Dokumentieren der Resultate
- Review und Auswertung
- Präsentieren der Resultate im Testteam

Ständiger Lernprozess

- Lerne das Produkt kennen
- Lerne, wie die Fehlerzustände in einer Software auftreten, und was die Fehlerzustände bewirken
- Lerne die Schwächen der Software kennen
- Lernen, wie die Software zu testen ist
- Teste die Software
- Melde die Probleme
- Erstelle neue Testfälle basierend auf dem, was du gerade gelernt hast

Checklistenbasiertes Testen

Checklistenbasiertes Testen (checklist-based testing)
 Ein erfahrungsbasiertes Testentwurfsverfahren, bei dem der erfahrene Tester eine
 Liste von Kontrollpunkten nutzt, die beachtet, überprüft oder in Erinnerung gerufen werden müssen, oder eine Menge von Regeln oder Kriterien gegen die ein Produkt verifiziert werden muss.

Vorgehensweise

- Abdeckung aller Testbedingungen aus einer Checkliste
- o Tester erstellen neue Checklisten als Teil der Analyse oder erweitern bestehende
- Erstellung der Checklisten auf Basis von Erfahrungen; Wissen über das Wesentliche; Verständnis, warum und wie Software fehlschlägt

Checklisten

- Dienen zur Unterstützung funktionaler und nicht-funktionaler Testarten
- o Sind eine gute Hilfestellung, um Konsens zu erzielen
- Lassen eine große Variabilität bei der Durchführung zu
- o Liefern potentiell eine größere Überdeckung, aber geringe Wiederholbarkeit

Certified Tester Foundation Level

© trendig technology services GmbH

200

IV. Testverfahren »4. Erfahrungsbasierte Testverfahren

Vergleich erfahrungsbasierte / systematische Verfahren

Erfahrungsbasierte Testfallermittlung ist eine sinnvolle Ergänzung zu den systematischen Verfahren

- Sie muss aber eine Ergänzung bleiben
- Sie kann nicht anhand von Kriterien auf Vollständigkeit geprüft werden die Anzahl erfahrungsbasiert ermittelter Testfälle kann stark variieren

Der Testablauf entspricht dem Ablauf für systematisch erstellte Testfälle

o Es unterscheidet sich nur der Weg, auf dem der Testfall ermittelt / festgesetzt wurde

Über das erfahrungsbasierte Testen lassen sich häufig **zusätzliche** Fehlerzustände aufdecken, die man über das systematische Testen nicht gefunden hätte

Die **Dokumentation** des Vorgehens ist sehr wichtig, um die Testfälle **wiederverwendbar** zu machen für nachfolgende Releasezyklen und um ggf. einen Fehlernachtest durchführen zu können

Zusammenfassung

- Erfahrungsbasierte Verfahren können systematische Verfahren zur Testfallermittlung ergänzen
- Basieren stark auf den individuellen Fähigkeiten des jeweiligen Testers
- Error Guessing, fehlerbasierte intuitive Testfallermittlung
- Exploratives Testen auf Grundlage einer Test-Charta
- Checklistenbasiertes Testen auf Grundlage von Listen mit Kontrollpunkten

Certified Tester Foundation Level

© trendig technology services GmbH

300

IV. Testverfahren » Schlüsselbegriffe

Schlüsselbegriffe

- Anweisungsüberdeckung
- Anwendungsfallbasierter Test
- Äquivalenzklassenbildung
- Black-Box-Testverfahren
- Checklistenbasiertes Testen
- Entscheidungstabellentests
- Entscheidungsüberdeckung
- Erfahrungsbasierte Testverfahren
- Exploratives Testen
- Grenzwertanalyse
- Intuitive Testfallermittlung
- Testverfahren
- Überdeckung
- White-Box-Testverfahren
- Zustandsübergangstest

Certified Tester Foundation Level

© trendig technology services GmbH

302

V. Testmanagement » Agenda

Kapitel V – Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiken und Testen
- V/6 Fehlermanagement

Lernziele für das Testmanagement

1 von

5.1 Testorganisation

FL-5.1.1 (K2)	Vor- und Nachteile unabhängigen Testens erklären können	1
---------------	---	---

FL-5.1.2 (K1) Die Aufgaben eines Testmanagers und eines Testers benennen können

5.2 Testplanung und -schätzung

FL-5.2.1 (K2)	Den Zweck und Inhalt eines Testkonzepts zusammenfassen können
FL-5.2.2 (K2)	Zwischen verschiedenen Teststrategien unterscheiden können
FL-5.2.3 (K2)	Beispiele für mögliche Eingangs- und Endekriterien geben können
FL-5.2.4 (K3)	Wissen über Priorisierung sowie technische und logische Abhängigkeiten anwenden können, um die Testdurchführung für ein gegebenes Testfallset zu planen
FL-5.2.5 (K1)	Faktoren benennen können, die den Testaufwand beeinflussen
FL-5.2.6 (K2)	Den Unterschied zwischen zwei Schätzverfahren erklären können: das

metrikbasierte Verfahren und das expertenbasierte Verfahren

Certified Tester Foundation Level

© trendia technology services GmbH

304

V. Testmanagement » Lernziele

Lernziele für das Testmanagement

2 von 2

5.3 Testüberwachung und -steuerung

FL-5.3.1 (K1) Testmetriken wiedergeben können

FL-5.3.2 (K2) Zweck, Inhalte und Zielgruppen für Testberichte zusammenfassen können

5.4 Konfigurationsmanagement

FL-5.4.1 (K2) Zusammenfassen können, wie Konfigurationsmanagement das Testen unterstützt

5.5 Risiken und Testen

FL-5.5.1 (K1)	Risikostufe anhand der Wahrscheinlichkeit (des Eintritts) und Auswirkung
	(im Schadensfall) definieren können

FL-5.5.2 (K2) Zwischen Projekt- und Produktrisiken unterscheiden können

FL-5.5.3 (K2) Anhand von Beispielen beschreiben können, wie die Produktrisikoanalyse Intensität und Umfang des Testens beeinflussen kann

5.6 Fehlermanagement

FL-5.6.1 (K3) Einen Fehlerbericht schreiben können, der einen während des Testens gefundenen Fehler enthält

Kapitel V – Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiken und Testen
- V/6 Fehlermanagement

Certified Tester Foundation Level

© trendig technology services GmbH

206

- V. Testmanagement »
- 1. Testorganisation

Testmanagement ist Teil des Testprozesses

- Testmanagement ist Projektmanagement von Testprojekten
- Testen beginnt bereits mit der Erstellung der ersten Dokumente (in Form von Reviews)
- In jeder Entwicklungsphase liegen unterschiedliche Testobjekte vor, für die ebenfalls unterschiedliche Testverfahren eingesetzt werden
- Für jede dieser Teststufen müssen Tester bzw. Testteams zusammengestellt werden
 - Dabei sind zwischen Kosten und Nutzen abzuwägen und
 - o Testteams auf Basis der Aufgaben auszuwählen

Unabhängiges Testen

1 von

Testaufgaben können von Personen in **verschiedenen Rollen** durchgeführt werden (von spezifischer Testrolle bis zur Rolle des Kunden / Anwenders). Hierbei erhöht die Unabhängigkeit des Testers die Effektivität des Testens

Vorteile der Unabhängigkeit von Testern (vom "Autoren" z.B. Entwicklern)

- Unabhängige Tester sind unvoreingenommen, erkennen andere Fehlerwirkungen als Entwickler, haben einen anderen Hintergrund und andere technische Sichtweisen
- Unabhängige Tester können die Testbasis verifizieren, hinterfragen oder widerlegen, auf der die Testobjekte hergestellt wurden. Sie können auch ohne (politischen) Druck objektiv, offen und ehrlich Probleme adressieren

Nachteile der Unabhängigkeit von Testern (vom "Autoren" z.B. Entwicklern)

- o Isolation des Entwicklungsteams, verzögerte Rückmeldungen, feindliches Verhalten
- Unabhängige Tester werden verantwortlich für Engpässe und Verzögerungen von Releases gemacht
- o Wichtige Informationen werden nicht an das Testteam weitergegeben
- o Das Verantwortungsbewusstsein der Entwickler für Qualität geht verloren

Certified Tester Foundation Level

© trendig technology services GmbH

308

V. Testmanagement »1. Testorganisation

Unabhängiges Testen – Grade der Unabhängigkeit

2 von 3

- Keine unabhängigen Tester
 - o Entwickler testen ihren eigenen Code
- Unabhängige Entwickler oder Tester innerhalb des Entwicklungsteams
 - o Entwickler testen die Arbeitsergebnisse ihrer Kollegen
- Unabhängiges Testteam innerhalb des Unternehmens
 - o Eine Gruppe, die testet und an das Projektmanagement berichtet
- Unabhängige Tester innerhalb des Unternehmens aus dem Fachbereich
 - Getestet wird in der Linien- oder Fachabteilung des Auftraggebers
 - Spezialisten testen bestimmte Testarten (Gebrauchstauglichkeit, IT-Sicherheit, Performance, Regulatorik, Übertragbarkeit)
- Unabhängige Tester außerhalb des Unternehmens
 - Testen vor Ort (inhouse)
 - Testen außerhalb des Betriebes (outsourcing)

Unabhängiges Testen – Zusammenstellung des Testteams 3 von 3

- Je nach Teststufe, Projektumfeld, Testsituation sind verschiedene Kombinationen der oben erwähnten Testteam-Zusammenstellungen sinnvoll
 - o Komponententest Eher entwicklernahe Testteams, ggf. mit Projektvorgaben zu Vorgehensweisen und Testdokumentation
 - Integrationstest Eher Projektteams, die die Module verschiedener Entwicklerteams integrieren und testen
 - System / Abnahmetest Eher Teams des Auftraggebers / Kunden, mit vorab definierten Kriterien zur Abnahme / Freigabe des Systems
- Abhängig von Softwareentwicklungslebenszyklus-Modell
 - In der agile Entwicklung z.B.
 - Tester sind Teil des Entwicklerteams
 - Einsatz externer Tester im Entwicklungsteam
 - Product Owner führen Abnahmetests am Ende jeder Iteration durch zur Validierung von User-Stories

Certified Tester Foundation Level

© trendig technology services GmbH

Profile der Testmitarbeiter

- Im Rahmen des Testens werden Mitarbeiter mit unterschiedlichen Qualifikationen benötigt
- In der Praxis hat es sich als nützlich erwiesen, folgende Profile innerhalb des Testprozesses zu unterscheiden
 - Testmanager
 - Testdesigner / Testanalyst
 - o Testautomatisierer
 - Testadministrator / Testsystemadministrator
 - Tester
 - Technischer Experte
- Im nachfolgenden Kapitel werden die Profile auf zwei Rollen reduziert: Testmanager und Tester

Tester

1. Testorganisation

Testmanager*

- Verantwortet und kontrolliert das Testprojekt
 - SW-Test und Qualitätsmanagement
 - Testplanung, Testfortschritt und Teststeuerung
 - o Leitung der Testaktivitäten
- Die Rolle kann auch eingenommen werden von
 - Projektmanager, Entwicklungsmanager (Anm: keine gute Idee!)
 - o Qualitätssicherungsmanager
 - o Manager einer Testgruppe, professionellem Testmanager
- Die Rolle im agilen Umfeld
 - o Die täglichen Tests werden von im Team integrierten Testern ausgeführt
 - Übergreifende Aufgaben über mehrere Teams können von Testmanagern außerhalb des Entwicklungsteams übernommen werden, sogenannte Test Coaches

Certified Tester Foundation Level

© trendig technology services GmbH

312

Testdesigner / Testanalyst

- Erstellt die Testfälle und legt die Reihenfolge der Durchführung fest
- Erfahrungen sind gefordert in den Bereichen
 - o Entwicklungs- und Test-Know-how
 - SW-Engineering-Kenntnisse
 - Wissen über Spezifikationsmethoden, Kenntnisse fachlicher Anforderungen

Testautomatisierer

- Prüft die Möglichkeiten der Automatisierung und setzt diese um
- Erfahrungen sind gefordert in den Bereichen
 - Erfahrung als Tester
 - Know-how in Testdesign und -automatisierung, Programmiererfahrung
 - Sehr gute Kenntnisse der eingesetzten Tools

^{*} auch: Testleiter, Testkoordinator, Testcoach, leitender Tester

Testsystemadministrator

- Richtet die Testumgebung ein und betreibt diese
- Erfahrungen sind gefordert in den Bereichen
 - Systemadministration (oder Zugriffsmöglichkeit auf einen Systemadministrator)
 - Entwicklungs- und Testwerkzeuge
 - o Datenbanksysteme und Netzwerke, falls notwendig
 - Installation und Betrieb der Systemumgebung

Tester

- Führt die Tests nach den Vorgaben resp. den Spezifikationen durch
- Erfahrungen sind gefordert in den Bereichen
 - Allgemeine IT-Grundlagen
 - Testbasiswissen, Kenntnisse über das Testobjekt
 - o Bedienung / Parametrierung des eingesetzten Tools
 - Erfahrung in der Testdurchführung und Protokollierung

Certified Tester Foundation Level

© trendig technology services GmbH

244

Technische Experten

- Ergänzen das Testteam je nach Bedarf
- Erfahrungen sind gefordert in den Bereichen
 - Datenbankadministratoren oder -designer
 - Experten zu User Interface
 - Netzwerkspezialisten
 - Themenspezifisches Know-How
- Je nach Problemstellung und Testumgebung etc. können weitere Spezialisten in die Testteams gebracht werden
 - Gefordert ist hier spezielles Fachwissen, das nichts mit dem Test-Know-how zu tun hat, z. B. Usability-Experten

Soft Skills – rollenübergreifend

- · Zu den fachlichen Qualifikationen kommen u. a.
 - Teamfähigkeit, politisches bzw. diplomatisches Geschick
 - o Bereitschaft, scheinbare Tatsachen zu hinterfragen
 - o Durchsetzungskraft, sicheres Auftreten
 - Exaktheit und Kreativität
 - Sicherer Umgang mit komplexen Situationen
 - Schnelle Auffassungsgabe
- Ohne diese zusätzlichen Eigenschaften ist ein Tester, trotz hoher fachlicher Kompetenz nur bedingt erfolgreich
- Nicht jede Rolle muss von einer separaten Person ausgefüllt sein, in kleinen Teams kann eine Person mehrere Rollen übernehmen

TEAM: Toll Ein Anderer Macht's / Totaler Einsatz Aller Mitglieder

Certified Tester Foundation Level

© trendig technology services GmbH

216

- V. Testmanagement »
- 1. Testorganisation

Aufgaben des Testmanagers – Überblick

- Erstellung und Prüfung einer Testrichtlinie für das Unternehmen
- Einbringen der Testperspektive in die Projektaktivitäten
- Anstoßen von Analyse, Entwurf, Realisierung und Durchführung von Tests
- Überwachen von Testfortschritt und Testergebnissen gegen Endekriterien
 - o Definition vom Metriken in Rücksprache mit den Stakeholdern
 - o Konsolidieren der Ergebnisse und Erstellen von Berichten und Auswertungen
- Auswählen von Werkzeugen und Schulungen / Trainings
 - o Empfehlung des Budgets, Zuordnung und Zeit für Pilotprojekte
- Entscheidung über Implementierung der Testumgebung
- Aufsetzen eines adäquaten Fehlermanagementsystems*
- Aufsetzen des Konfigurationsmanagements* der Testmittel
- Entwickeln und f\u00f6rdern des Berufsbildes "Tester" in Organisation
- Das sind keine reinen Testaufgaben, sondern fürs gesamte Projekt notwendig.
 Der Testmanager stellt die Anforderungen.

Aufgaben des Testmanagers in Testplanung / -steuerung

1 von

- Implementierung einer Teststrategie in einem spezifischen Projekt
- Initiierung, Überwachung und Steuerung von Tests und Testzyklen

 Testzyklus - Durchlauf durch den fundamentalen Testprozess auf Basis einer fixierten Version des Testobjekts

Testplanung

- Grobplanung der Testvorgehensweise:
 zu frühem Zeitpunkt im Projekt erstellt,
 im Testkonzept festgehalten
 (Kontext, Risiken, Testdauer, Aufwand, Kosten)
- Erstellung eines Planungsdokuments, das u. a.
 Umfang, Testvorgehensweise sowie Ressourcenund Zeitplanung der Tests beschreibt
- o Definition der Teststufen
- Testkonzept erstellen, schreiben, aktualisieren und abstimmen mit Beteiligten

Testplanung

Testanalyse

Testentwurf

Testrealisierung

Testdurchführung

Testabschluss

Certified Tester Foundation Level

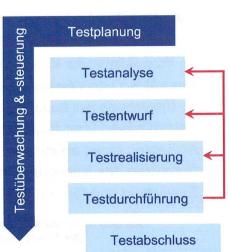
© trendig technology services GmbH

318

- V. Testmanagement »
- 1. Testorganisation

Aufgaben des Testmanagers in Testplanung / -steuerung

2 von 4

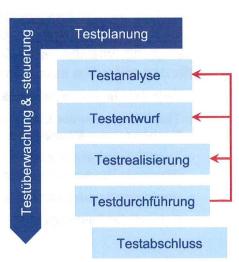

Testzyklusplanung

- Feinplanung der Testzyklen ist eine Ergänzung der Grobplanung, Abstimmung auf konkreten Testzyklus. Feinplanung ist abhängig von der Projektsituation (z. B. Entwicklungsstand, verfügbare Ressourcen)
- Testplanung beginnt mit Start des Projekts.
 Hierin werden Ecktermine, Budget und Prioritäten der verschiedenen Testaktivitäten berücksichtigt

Basis, um die Vorgaben für die Testanforderung und die Teststrategie zu definieren

Ressourcen müssen eingeplant werden

- Sie sind meist knapp und müssen individuell verteilt werden
- Während der Testzyklen kann es zu Verschiebungen kommen, dann ist Ressourcenplanung anzupassen
- o Es ist an Vertretungsregelungen zu denken


Aufgaben des Testmanagers in Testplanung / -steuerung

Projektentwicklung ist zu berücksichtigen

- o Im Verlauf des Projektes kann es zu Verzögerungen kommen, so dass die gesamte zeitliche Planung in Gefahr ist
- Hierbei kann es sein, dass wegen verlorener Zeit geplante Tests nicht mehr durchgeführt werden können

Ergebnisse vorangegangener Tests beeinflussen Testzyklusplanung

- o Auftretende Probleme können Priorisierung der Tests ändern
- o Korrigierte Fehlerzustände machen Nachtests und eventuell Zusatztests erforderlich
- o Tiefere Analyse entdeckter Fehlerzustände kann Zusatztests erforderlich machen

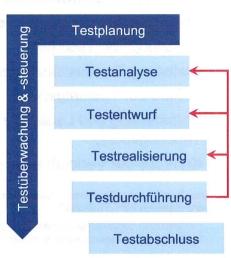
Certified Tester Foundation Level

© trendig technology services GmbH

320

V. Testmanagement »

1. Testorganisation



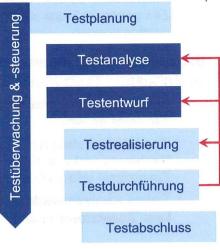
Aufgaben des Testmanagers in Testplanung / -steuerung 4 von 4

- Erfolgskontrolle und Überwachung der laufenden Tests geschieht anhand von im Testkonzept vereinbarten Testmetriken
- Dokumentation der Erfolgskontrolle im Testfortschrittsbericht
- Testende wird durch den Testmanager bestätigt, wenn die Endekriterien (bestimmt aus Testmetriken) erfüllt sind

Typische Endekriterien basieren bspw. auf

- Werte für Überdeckung, Funktionalität, Risiko
- o Schätzungen über Restfehlerdichte oder Zuverlässigkeit
- Verbleibenden Risiken aus Restfehlerzuständen und -wirkungen oder fehlender Testüberdeckung
- o Kosten, Termine

1. Testorganisation


Aufgaben des Testmanagers in Testanalyse und Testentwurf

Ziel des Testens ist es, mit möglichst **geringem Aufwand** möglichst **viele** relevante **Fehlerzustände** zu finden!

Initiierung der Analyse der Testbasis und der Spezifikation der Testfälle und

Testdaten auf Grundlage der im Testkonzept definierten Teststrategie, d.h. auch Festlegung, wie die Testfälle ausgestaltet sein und ablaufen sollen, im Einzelnen

- Definition logische vs. konkrete Testfälle
- Testfälle sind unter Einbeziehung von Fachbereichs-Mitarbeitern zu erstellen
- Testfälle sind im Hinblick auf ihre Wiederholbarkeit zu konzipieren
- o Implementierung der Tests / Testdurchführung
- Entwurf der Testumgebung

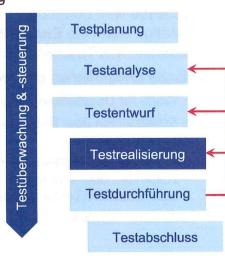
Certified Tester Foundation Level

© trendig technology services GmbH

322

V. Testmanagement »1. Testorganisation

Aufgaben des Testmanagers in Testrealisierung / -steuerung


Initiierung der vorbereitenden Maßnahmen, wie

- Entwicklung Testabläufe
- Kontrolle der Softwareversion in Testumgebung
- Erstellung automatisierter Testskripte
- Erstellung von Testsuiten
- Erstellung Testausführungspläne
- Aufbau der Testumgebung
- Vorbereitung und Laden der Testdaten in die Testumgebung
- Kontrolle der Verfolgbarkeit (Traceability)

Diese Begriffspaare "Testskript / Testdrehbuch" sind Spezialisierungen / Interpretationen vom "Testablauf"

...Testdrehbuch: (überwiegend) manueller Testablauf

...Testskript: (überwiegend) automatisierter Testablauf

Aufgaben des Testmanagers in Testdurchführung / -steuerung

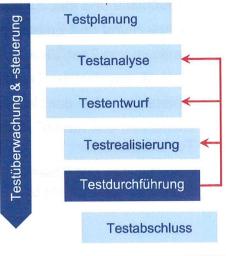
Vergleich mit Plandaten während des Projektes

o Jeder einzelne Testzyklus muss mit dem Plan abgeglichen werden

 Liegen Ergebnisse im vorausgesagten Bereich? – Zeitbedarf, Anzahl gefundener Fehler, Korrekturaufwand, Nachtests usw.

Terrier, Norrentaradiwaria, Naoritodio ao

Einhaltung des geplanten Aufwandes


- Tooleinsatz kann Abläufe effizient gestalten, muss aber frühzeitig erfolgen
- Weitgehende Automatisierung anstreben, wo sie mit vertretbarem Aufwand sinnvoll ist
- o Risikobasiertes Vorgehen
- Aber bereits in der Testplanung muss Automatisierung berücksichtigt werden (langer Vorlauf)

Fehlermanagement

- o Qualifizierung der Abweichungen
- o Abgeleitete Korrekturmaßnahmen

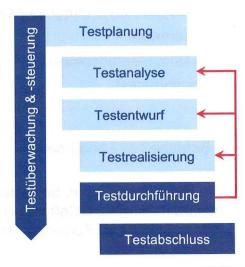
Certified Tester Foundation Level

© trendig technology services GmbH

324

1. Testorganisation

Aufgaben des Testmanagers in Testdurchführung und -abschluss


Die bei der Durchführung der Tests erstellten **Auswertungen** (z. B. Fehlerprotokolle, Zusammenfassungen, Einteilung in Fehlerklassen, Statistiken), die Fehlerverfolgungen, die Bewertung der Endekriterien **und das**

Reporting an den Auftraggeber sind wichtige Steuerungsmittel für die Projektleitung und das Management (z. B. als eine Grundlage für die Ressourcen- oder Zeitplanung)

Schreiben von **Testabschlussberichten**, die die Informationen zusammenfassen, die während des Testens gesammelt wurden

Der Einsatz von **Tools** und standardisierten Templates erhöht die Qualität und **kann den Aufwand reduzieren**

Archivierung Testmittel, Übergabe IT-Betrieb, Lessons Learned, KVP

1. Testorganisation

Aufgaben des Testers

- Mitarbeit bei der Testplanung und Testplan-Review
- Analyse, Review der Testbasis auf Testbarkeit
- Ausführen von Testfallentwurf und Testdurchführung (inkl. Auswertung der Ergebnisse und inkl. funktionale und nicht-funktionale Eigenschaften)
- Vorbereitung und Erstellung von Testdaten
- Reviews von Testfällen, die von anderen Testern geschrieben wurden
- Unterstützen bei der Testberichterstattung
- Unterstützen bei der Umsetzung der Testautomatisierung
- Ausführen von "doing" Aufgaben für die Testautomatisierung und Testinfrastruktur
- Unterstützen der Abschlussphase bei Rückfragen, Erstellung Testabschlussbericht und lessons learned

Certified Tester Foundation Level

© trendig technology services GmbH

V. Testmanagement »

1. Testorganisation

Wer übernimmt die "Tester"-Rolle?

Unterschiedliche Beteiligte übernehmen die Rolle "Tester" für unterschiedliche Teststufen und -phasen. Tester, die Testanalyse, Testentwurf, spezifische Testarten oder Testautomatisierung übernehmen, sind oftmals Spezialisten

 Komponenten- / Integrationstest Entwickler

 Systemtest unabhängiges Testteam

unabhängiges Testteam Systemintegrationstest

Business Analysten, User, Abnahmetest Fachexperten (Subject Matter Experts) des Kunden

Operatoren und / oder System- Betrieblicher Abnahmetest administratoren des Kunden

Die Rolle Tester kann, basierend auf den Risiken des Produkts, dem Projekt und dem gewählten Softwareentwicklungslebenszyklus-Modell, je Teststufe von unterschiedlichen Personen übernommen werden

1. Testorganisation

Zusammenfassung

- Testteams sind um so besser, je unabhängiger sie sind, auch wenn sie sich aus Entwicklern der Testobjekte zusammensetzen
- Der Testmanager
 - Stellt sein Team frühzeitig zusammen
 - o Plant die Tests und bereitet sie vor
 - o Gibt die Teststrategie vor
 - o Organisiert das Fehlermanagement
 - o Steuert die Testdurchführung
 - o Werkzeugauswahl, z. B. für Testautomatisierung
 - o Berichtet an die Projektleitung und das Management
- Der Tester unterstützt die Testplanung, führt die Tests durch, erstellt die Fehlermeldungen und die Testdokumentationen und unterstützt ggf. bei der Testautomatisierung

Certified Tester Foundation Level

© trendig technology services GmbH

32

V. Testmanagement » Agenda

Kapitel V - Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiko und Testen
- V/6 Fehlermanagement

Testplanung

Testanalyse

Testentwurf

Testrealisierung

Testdurchführung

Testabschluss

Testüberwachung & -steuerung

Grundlagen der Testplanung

Testplanung wird beeinflusst durch

- Testrichtlinie, Teststrategie des Unternehmens
- o Entwicklungslebenszyklen, Verfahren
- o Testumfang, Testziele, Risiken, Einschränkungen
- Kritikalität, Testbarkeit
- Verfügbarkeit von Ressourcen

Ist eine **kontinuierliche** Aktivität über den gesamten Produktlebenszyklus hinweg

 Die Planung ist laufend zu prüfen und ggf. auf Basis von Erkenntnissen aus laufenden Testaktivitäten anzupassen

Stufenweise Verfeinerung (level test plan)

- Bereits zu Projektbeginn ist eine Testplanung aufzustellen sie ist Teil des Projektplans und somit die Entscheidungsgrundlage über das Projekt
- Im Projektverlauf werden sukzessive weitere Informationen erarbeitet, die zur laufenden Detaillierung der Testplanung einzusetzen sind

Certified Tester Foundation Level

© trendig technology services GmbH

330

- V. Testmanagement »
- 2. Testplanung und -schätzung

Testkonzept

Die Testplanung kann dokumentiert werden in

- a) einem Mastertestkonzept
- b) einzelnen Testkonzepten
 - je Teststufe (Systemtest, Abnahmetest)
 - für die einzelnen Testarten (Gebrauchstauglichkeit, Performance)

Das Testkonzept umfasst folgende Testplanungsaktivitäten

- o Ermittlung von Budget, Umfang, Ziele und Risiken der Tests
- o Festlegung der allgemeine Testvorgehensweise
- o Integration und Koordination der Testaktivitäten in die SW-Lebenszyklusaktivitäten
- Entscheidungen treffen über
 - Was und wie ist zu testen?
 - Welche Personen und Ressourcen für die einzelnen Testaktivitäten nötig sind?
- o Planung der Aktivitäten (sequentielle, agile, iterative Vorgehensmodelle)
- Definition der Metriken zur Testüberwachung und -steuerung
- o Festlegung Detaillierungsgrad und Struktur der Testdokumentation (Vorlagen)

- V. Testmanagement »
- 2. Testplanung und -schätzung

Mastertestkonzept nach ISO 29119 (vormals: IEEE 829)

- 1. Dokumentenbezeichnung
- 2. Einführung
- 3. Testobjekte
- Qualitätsmerkmale, die getestet werden
- Qualitätsmerkmale, die nicht getestet werden
- 6. Teststrategie
- 7. Abnahmekriterien und Endekriterien
- Kriterien für den Testabbruch und die Wiederaufnahme

- 9. Testdokumentation
- 10. Testaufgaben
- 11. Testinfrastruktur
- 12. Verantwortlichkeiten, Zuständigkeiten
- 13.Personal, Einarbeitung, Ausbildung
- 14. Zeitplan, Arbeitsplan
- 15. Planungsrisiken und Unvorhergesehenes
- 16. Genehmigung, Freigabe

Certified Tester Foundation Level

© trendig technology services GmbH

332

- V. Testmanagement »
- 2. Testplanung und -schätzung

Teststrategie und Testvorgehensweise

Die **Teststrategie** beschreibt auf Produkt- oder Organisationsebene verallgemeinert den Testprozess

Häufig werden verschiedene Arten von Teststrategien kombiniert, sie ergänzen sich sinnvoll und ermöglichen dadurch ein effektiveres Testen, z.B. Risikobasiertes Testen (analytisch) mit explorativem Testen (reaktiv)

Die **Testvorgehensweise** ist die projekt- bzw. release-spezifische Anpassung der Teststrategie

• Teststrategie (test strategy)

Eine Dokumentation, die die generischen Anforderungen an das Testen in einem oder mehreren Projekten innerhalb einer Organisation beschreibt, einschließlich Details darüber, wie das Testen durchgeführt werden soll, und die an der Testrichtlinie ausgerichtet ist.

Gängige Arten von Teststrategien

1 von 3

- Analytische Teststrategie z.B. risikobasiertes Testen
 - o Analyse der Testbasis zur Identifikationen der benötigten Testbedingungen
 - o Ableitung der Testbedingungen aus den Anforderungen oder Risiken
 - z.B. Risikobasiertes Testen entwirft und priorisiert die Tests auf Basis der Risikostufe
- Modellbasierte Teststrategie am Anforderungsprofil orientiert
 - Entwicklung eines Modells des Systems (tatsächliche / erwartete Situationen)
 - Modell auf Basis eines geforderten Produktaspektes
 - Funktion, Geschäftsprozess, interne Struktur, nicht-funktionale Eigenschaft
 - Berücksichtigung von Hardware, Software, Datenkapazität, Netzwerk und Infrastruktur der erwarteten Produktionsumgebung
 - o z.B.: Geschäftsprozessmodell, Zustandsmodell, Zuverlässigkeitswachstumsmodelle

Certified Tester Foundation Level

© trendig technology services GmbH

334

- V. Testmanagement »
- 2. Testplanung und -schätzung

Gängige Arten von Teststrategien

2 von 3

- Methodische Teststrategie z.B. qualitätsmerkmal-orientiert
 - o Vordefinierter Satz von Tests oder Testbedingungen (Bsp. ISO 25010)
 - Checkliste oder Sammlung generalisierter Testbedingungen
 - o Gängige oder wahrscheinliche Fehlerwirkungen, Liste von Q-Merkmalen
 - o z.B. unternehmensweite Look-and-Feel Standards für mobile Apps oder Websites
- Prozess- oder standardkonforme Teststrategie (z.B. A-SPICE, MISRA)
 - o z.B. für medizinische Systeme der Standard der Food & Drug Administration
 - Definiert von einem Normungsausschuss oder Expertengremium
 - Umfassen Dokumentation, Identifikation und Verwendung von Testbasis und Testorakel, Organisation des Testteams
 - Scrum verwendet User-Stories, wo Tester für jede Iteration den Testaufwand schätzen, Testbedingungen (Abnahmekriterien) identifizieren, Tests ausführen und den Status berichten

Gängige Arten von Teststrategien

3 von

- Reaktive Teststrategie erst mit dem Erhalt des Testobjektes
 - Entwurf und Realisierung von Tests als Reaktion auf Erkenntnisse vorheriger Testergebnisse
 - Exploratives Testen, entwickeln von Test-Chartas für die relevanten Merkmale,
 Verteilung der Test-Chartas an die Tester, Überarbeitung der Test-Chartas für die nächste Testsitzung an Hand der Ergebnisse
- Angeleitete oder beratende Teststrategie durch externes Testteam
 - Vorgehensweise auf Basis von Beratung, Anleitung oder Anweisungen von Stakeholdern, Fachexperten, die meist außerhalb des Testteams oder Unternehmens stehen
- Regressionstestorientierte Teststrategie primär regressionsvermeidend
 - Wiederverwendung vorhandener Testmittel, Automatisierung von Regressionstests, Standardtestsuiten
 - o Rückgang vorhandener Leistungsfähigkeit vermeiden

Certified Tester Foundation Level

© trendig technology services GmbH

336

- V. Testmanagement »
- 2. Testplanung und -schätzung

Testvorgehensweise – Auswahlkriterien

Aus der allgemeinen abstrakten Teststrategie wird durch den Testmanager die projektspezifische Testvorgehensweise

- Die Testvorgehensweise ist der Ausgangspunkt für die Auswahl von
 - o Testverfahren, Teststufen, Testarten
 - Definition der Eingangs- und Endekriterien (Definition-of-Ready) (Definition-of-Done)
- Die Entscheidungsbasis für die Testvorgehensweise ist
 - o Komplexität und Ziele des Projekts
 - o Art des zu entwickelnden Produkts
 - Produktrisikoanalyse
- Die ausgewählte Vorgehensweise wird bestimmt durch
 - o Risiken, funktionale Sicherheit, verfügbare Ressourcen und Fähigkeiten
 - Technologie (bekannt / neu / einzigartig / etabliert)
 - Art des Systems (kundenspezifisch / Standardsoftware)
 - o Testziele (Unternehmensziele / Qualitätsziele / Kundenziele)
 - Externe und interne Regularien / Vorschriften / Richtlinien

Eingangs- und Endekriterien (DoR) / (DoD)

Metriken für eine effektive Kontrolle der Qualität von Software und Tests sind

- 1. Eingangskriterien (Definition-of-Ready), bei Verfügbarkeit von
 - o Testbaren Anforderungen, User-Stories, Modellen usw.
 - Testelementen (resp. Testobjekten) mit erfüllten Endekriterien der vorherigen Teststufen
 - o Testumgebung, Testwerkzeugen, Testdaten, notwendigen Ressourcen
- 2. Endekriterien (Definition-of-Done), wenn folgendes gegeben ist
 - o Geplante Tests wurden durchgeführt und festgelegte Überdeckung erreicht
 - o Ungelöste Fehlerzustände innerhalb vereinbarter Grenze
 - Anzahl geschätzte Restfehler ist gering
 - Relevante Qualitätsmerkmale haben ausreichendes Niveau (Performance, Zuverlässigkeit, Zugriffssicherheit usw.)

Ein **Beginn ohne erfüllte Eingangskriterien** ist vermutlich schwieriger, teurer, risikoreicher, ein **Ende ohne erfüllte Endekriterien** ist üblich, das Risiko sollte geprüft und akzeptiert sein von den Fachverantwortlichen, Stakeholdern

Certified Tester Foundation Level

© trendig technology services GmbH

338

- V. Testmanagement »
- 2. Testplanung und -schätzung

Testausführungsplan

- Finale Festlegung der Reihenfolge der durchzuführenden manuellen und automatisierten Tests unter Berücksichtigung von Priorisierung und Risikoeinschätzung
- Berücksichtigt werden Priorisierung, Abhängigkeiten, die effizienteste Reihenfolge der Testdurchführung, Fehlernachtests und Regressionstests
- Dabei kann von der Reihenfolge streng nach der Priorität abgewichen werden
- Oft ein Kompromiss zwischen Effizienz der Testdurchführung und Einhaltung der Priorisierungen
- Gute Testfälle beschreiben die Abhängigkeiten von anderen Testfällen

- V. Testmanagement »
- 2. Testplanung und -schätzung

Testaufwand beeinflussende Faktoren

1 von

- Testaufwandsschätzungen sind die näherungsweise Beurteilung des Testaufwandes auf der Basis von Erfahrungswerten und Informationen
- Produkteigenschaften
 - o Produktrisiken, Qualität der Testbasis
 - o Größe und Komplexität des Systems unter Test (SUT)
 - Komplexität des Produkteinsatzbereichs
 - o Besondere Qualitätsmerkmale (z.B. Zuverlässigkeit, Sicherheit)
 - o Detaillierungsgrad der Testdokumentation (Dokumentationsstandards)
 - o Gesetzliche oder regulatorische Anforderungen
- Menschliche Eigenschaften
 - o Fähigkeiten und Erfahrungen der beteiligten Personen
 - o Teamzusammenarbeit, Leitung

Certified Tester Foundation Level

© trendig technology services GmbH

340

- V. Testmanagement »
- Testplanung und -schätzung

Testaufwand beeinflussende Faktoren

2 von

- Entwicklungsprozesseigenschaften
 - Stabilität und Reife der Organisation
 - o Das genutzte Softwareentwicklungsmodell, der Testprozess
 - Vorgehensweise im Test
 - o Anpassung oder Entwicklung von Testwerkzeugen, kundenspezifische Hardware
 - o Außergewöhnliche Aufwände für Aufbau, Training und Einarbeitung
 - Zeitdruck (durch das Management, die Projektleitung)
- Testergebnisse
 - o Fehlerhäufungen, Schweregrad der gefundenen Fehlerzustände
 - Anzahl der Änderungen (im Code, in den Anforderungen)

Testschätzverfahren

1 von 3

- Der Aufwand für die Vorbereitung und Durchführung von Tests ist lohnend, solange er niedriger ist als der Aufwand für die Fehlerkosten, die ohne Tests entstehen würden
- Die Entscheidung, wie viel Testaufwand noch wirtschaftlich ist, muss daher auf Annahmen und Schätzungen basieren
- Zwei der häufigsten Verfahren sind
 - 1. Metrikbasierte Schätzung
 - 2. Expertenbasierte Schätzung

Certified Tester Foundation Level

© trendig technology services GmbH

240

- V. Testmanagement »
- 2. Testplanung und -schätzung

Testschätzverfahren

2 von 3

1. Metrikbasierte Schätzung (analogie- und anteilsbasiert)

- Kategorisierung der durchzuführenden Testaufgabe und Lokalisieren eines bereits durchgeführten Projektes mit einer vergleichbaren Testaufgabe
- o Übernahme des damals tatsächlich angefallenen Aufwands als Schätzgrundlage
- Auf Basis von Metriken (wie z.B. Lines Of Code, Anzahl Module, Anzahl Testfälle) hochrechnen auf das aktuelle Projekt
- Erfordert eine detaillierte Historie vergangener Projekte mit validen Ist-Aufwandsdaten, Organisationshistorie und Metriken sowie davon abgeleitete Modelle zum Schätzen von der Anzahl an Fehlern, Testzyklen und Testfällen
- Durchschnittswerte der Branche und Vorhersagemodelle, Anzahl Codezeilen, geschätzter Aufwand der Entwickler, etc.
- Beispiele
 - In sequentiellen Projekten: Modelle der Fehlerentfernung aus Vorprojekten mittels Erfassung von Fehlerzuständen und der Zeit, sie zu finden und beheben
 - o In **agilen** Projekten: **Burndown-Charts**, dabei wird die Velocity (Story Points/Sprint) genutzt, um den Umfang der Aufgaben für die nächste Iteration zu schätzen

Testschätzverfahren

3 von 3

2. Expertenbasierte Schätzung (aufgabenbasiert)

- o Der Schätzer ist der Experte
- Viel Erfahrung und Intuition seitens des Schätzers notwendig, um eine valide Schätzung durchzuführen, Historiendaten können helfen
- o Übernahme des damals tatsächlich angefallenen Aufwands als Schätzgrundlage
- Mit genügend Erfahrung eingesetzt, ergeben sich in der Regel gute Näherungswerte für tatsächlich anfallenden Testaufwand
- Beispiele
 - In sequentiellen Projekten: Breitband-Delphi-Schätzverfahren, in dem Gruppen von Experten auf Basis ihrer Erfahrung schätzen
 - In agilen Projekten: Planungspoker (planning poker), Teammitglieder schätzen den Aufwand auf Basis ihrer Erfahrung (u.a. werden die geringste und höchste Schätzung dabei im Team erläutert)

Certified Tester Foundation Level

© trendig technology services GmbH

344

V. Testmanagement »
2. Testplanung und -schätzung

trendig

Zusammenfassung

- Die Testplanung wird u.a. durch die Testrichtlinie und Teststrategie des Unternehmens beeinflusst
- Das Testkonzept als grundlegendes Element der Testplanung sollte zu Beginn der Tests erstellt werden (Muster für die Gliederung gibt ISO 29119)
- Arten von Teststrategien
 - Analytisch
 - Modellbasiert
 - Methodisch
 - Prozesskonform (oder standardkonform)
 - Angeleitet (oder beratend)
 - o Regressionstestorientiert, leistungserhaltend
 - Reaktiv
- Die Testaufwandsschätzung kann mit verschiedenen Methoden durchgeführt werden: metrik- oder expertenbasiert, beide werden sowohl im agilen wie sequentiellen Umfeld genutzt

V. Testmanagement » Agenda

Kapitel V - Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiko und Testen
- V/6 Fehlermanagement

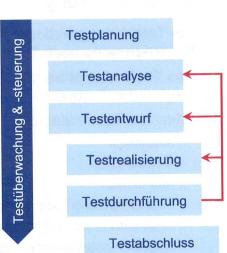
Certified Tester Foundation Level

© trendig technology services GmbH

346

- V. Testmanagement »
- 3. Testüberwachung und -steuerung

Testüberwachung und -steuerung


Testüberwachung:

- Sammeln von Informationen über Testaktivitäten (manuell, automatisch)
- Beurteilung des Testfortschritts, mögliche Planabweichungen feststellen
- Prüfen, ob Testendekriterien (DoD) erfüllt sind

Teststeuerung:

Leitende, korrigierende Maßnahmen auf Basis der gesammelten Metriken

- Neupriorisierung von Tests nach Risikoeintritt
- Anpassung des Testplans aufgrund Verfügbarkeit bzw. Nichtverfügbarkeit von Ressourcen oder der Testumgebung
- o Neubewertung eines geänderten Testelements gegen Eingangs- und Endekriterien

- V. Testmanagement »
- 3. Testüberwachung und -steuerung

Testüberwachung mittels Metriken

Metriken (messbare Größen, Kennzahlen) dienen der Beurteilung von

- Testfortschritt gegenüber dem Zeitplan, Budget; aktuelle Qualität des Testobjekts
- Angemessenheit des Testfortschritts, Effektivität der Testaktivitäten

Gängige Testmetriken sind

- Prozentsatz der durchgeführten Arbeiten in der Testvorbereitung, der Testfallplanung oder der Vorbereitung der Testumgebung
- Anzahl der durchgeführten/nicht durchgeführten Testfälle und der bestandenen / nicht bestandenen Testfälle
- o Testüberdeckung der Anforderungen, Risiken oder des Codes
- o Fehlerinformationen, z. B. Fehlerdichte, gefundene / behobene Fehlerzustände, Ausfallrate und Fehlernachtestergebnisse
- Testüberdeckung von Anforderungen, User-Stories, Abnahmekriterien oder Code
- o Testkosten, inklusive der Kosten im Vergleich zum Nutzen durch das Auffinden des nächsten Fehlerzustandes oder für den nächsten Testdurchlauf

Certified Tester Foundation Level

© trendig technology services GmbH

- V. Testmanagement »
- 3. Testüberwachung und -steuerung

Testberichte: Zwecke, Inhalte und Zielgruppen

Testaktivitäten werden im Rahmen der Testberichterstattung verdichtet und kommuniziert (Testfortschrittsbericht, Testabschlussbericht) (ISO 29119-3)

- Testfortschrittsberichte werden regelmäßig vom Testmanager während der Testüberwachung und -steuerung erstellt
- Der Testabschlussbericht wird nach Erreichen der Endekriterien vom Testmanager erstellt (Zusammenfassung der durchgeführten Tests auf Basis des letzten Testfortschrittberichts und zusätzlicher relevanter Informationen)

Testberichte: Zwecke, Inhalte und Zielgruppen

2 von 3

Übliche Informationen in einem Testfortschritts- / abschlussbericht

- o Zusammenfassung der durchgeführten Tests, Vorfälle während einer Testperiode
- o Planabweichungen (Zeit, Dauer, Aufwand von Testaktivitäten) vom Testkonzept
- Erreichung von Meilensteinen (z. B. Abnahme von Testobjekten auf Teststufen),
 Stand der Tests, Produktqualität gegen Endekriterien oder DoD
- o Benennen von Faktoren, die den Fortschritt blockiert haben oder noch blockieren
- Darstellen des Testfortschrittes anhand von Metriken gegenüber dem Testkonzept (Fehlerzustände, Testfälle, Testüberdeckung, Aktivitätsfortschritt, Ressourcenverbrauch)
- o Aufzeigen der Restrisiken (neue / veränderte Risiken zum Vorbericht)
- o Beurteilung der Qualität des Testobjekts
- o Zusammenstellen der erzeugten wiederverwendbaren Testarbeitsergebnisse
- o Darstellen der Aussichten, was für die nächste Testperiode geplant ist
- Gesamtbewertung / Status ("Ampel")

Certified Tester Foundation Level

© trendig technology services GmbH

350

- V. Testmanagement »
- 3. Testüberwachung und -steuerung

Testberichte: Zwecke, Inhalte und Zielgruppen

3 von

- Varianten der Testberichterstattung sind abhängig
 - Vom Projekt
 - Von den organisatorischen Anforderungen
 - Vom Softwareentwicklungslebenszyklus
- Beispiele
 - Ein komplexes Projekt mit vielen Stakeholdern, Regularien erfordert detaillierte, genaue Berichte
 - Bei der agilen Softwareentwicklung wird mit u.a. mit Task Boards (Kanban),
 Fehlerzusammenfassungen und Burn-Down-Charts gearbeitet, die in Daily's
 (tägliches Stand-up-Meeting) besprochen werden
 - Testberichte k\u00f6nnen auf die Zielgruppe angepasst sein
 - Technische Zielgruppe detaillierte Informationen über Fehlerarten und Trends
 - Management (KLM) abstrakt nach Fehlerstatusreport nach Priorität, Budget, Zeitplan, Testbedingungen erfüllt / nicht erfüllt / nicht getestet

- V. Testmanagement »
- 3. Testüberwachung und -steuerung

Teststeuerung

1 von 2

Teststeuerung ist eine Führungsaufgabe

- o Der Testmanager gehört zum Führungskader des Projekts
- Er benötigt die Kompetenzen, um z. B. Überstunden anzuordnen, externes Zusatzpersonal zu beauftragen usw.
- Er braucht Führungspersönlichkeit

Notwendigkeit von Teststeuerung

- o Tests müssen auf den Weg gebracht werden
- Wenn der Weg nicht eingehalten wird oder nicht eingehalten werden kann, muss gesteuert werden
- Teststeuerung beinhaltet alle Führungs- und Korrekturmaßnahmen, die während der Testdurchführung ergriffen werden
- Teststeuerung kann sich ausschließlich auf die gemessenen Testergebnisse (siehe Testfortschrittsüberwachung) oder auf die berichteten Informationen (siehe Testberichterstattung) beziehen

Certified Tester Foundation Level

© trendig technology services GmbH

352

- V. Testmanagement »
- 3. Testüberwachung und -steuerung

Teststeuerung

2 von 2

- Mehr Ressourcen (Zeit / Geld) bereitstellen
 - o Mehr Personal
 - o Mehr Budget oder Umshiften
 - Tooleinsatz zur Mechanisierung von T\u00e4tigkeiten
- Arbeitsaufwand reduzieren (Abstriche an Qualität)
 - Varianten von Testfällen weglassen
 - Testtiefe von Testobjekten reduzieren
 - Tests mit weniger Testdaten durchführen
 - Testobjekte weglassen, Testsets weglassen
 - o Funktionalität reduzieren / Stufenplan entwickeln
- Eingeleitete Teststeuerungsmaßnahmen sind zu berichten, um die Projektleitung / den Auftraggeber über möglicherweise veränderte Risiken der Produkteinführung zu informieren

Zusammenfassung

- Die Testüberwachung erfolgt anhand messbarer Kriterien und liefert so die Informationsbasis für die Teststeuerung
- Eine regelmäßige Testberichterstattung informiert die Projektleitung und das Management sowie den Kunden über den Teststatus, sie umfasst Testfortschrittsberichte und Testabschlussberichte
- Die Varianten der Testberichte hängt ab vom Projekt, von den organisatorischen Anforderungen und vom Softwareentwicklungslebenszyklus

Certified Tester Foundation Level

© trendig technology services GmbH

354

V. Testmanagement » Agenda

Kapitel V – Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiko und Testen
- V/6 Fehlermanagement

Konfigurationsmanagement

- Im Verlauf einer Softwareentwicklung werden große Mengen an Daten / Informationen / Ergebnissen erstellt
 - o Anforderungen, Spezifikationen, Systementwürfe, Komponenten Systemversionen
- Die Integrität der Komponente, des Systems und der Testmittel sichern
 - o Die Beziehungen untereinander und zueinander herzustellen
- Das Konfigurationsmanagement dient dazu
 - Alle Testelemente und Elemente der Testmittel
 - Sind eindeutig identifiziert, versionskontrolliert, Änderungen werden verfolgt
 - Stehen in Verbindung zueinander
 - Verfolgbarkeit ist zwischen den Elementen der Testmittel und den Testelementen möglich
 - Alle identifizierten Softwareelemente und Dokumente sind eindeutig in der Testdokumentation benannt
- Einführung eines Werkzeugs mit der Infrastruktur bereits in der Testplanung

Certified Tester Foundation Level

© trendig technology services GmbH

356

V. Testmanagement »
4. Konfigurationsmanagement

Begriffe

Konfigurationsmanagement (KM)

Technische und administrative Maßnahmen zur Identifizierung und Dokumentation der fachlichen und physischen Merkmale eines Konfigurationselements, zur Überwachung und Protokollierung von Änderungen solcher Merkmale, zum Verfolgen des Änderungsprozesses, Umsetzungsstatus und zur Verifizierung der Übereinstimmung mit spezifizierten Anforderungen [IEEE 610]

- Das Change-Management dient der Verfolgung aller Aktivitäten (z. B. Änderung Quelltexte) im Rahmen eines Änderungsauftrages
- Das Build-Management beschreibt alle Schritte zum Aufbau der fertigen, auszuliefernden SW, sowohl für Komplettsysteme wie auch für durch Änderungen betroffene Teilsysteme
- Das Release-Management erlaubt die Klammerung versionierter Artefakte zu einem Gesamtprodukt für Test, Auslieferung u.Ä.
- Das Versions-Management hält für alle Artefakte (unter KM) fest, wer wann was angelegt oder geändert hat

Typische Probleme

Wird das Konfigurationsmanagement vernachlässigt wird es fast zwangsläufig z. B. zu folgenden Problemen kommen

- "Versionsdurcheinander" Unklarheit darüber, welche Dateiversionen zusammengehören, welche Versionen aktuell sind – es wird auf der Grundlage "alter" Spezifikationen programmiert!
- Wo und wann wurde etwas geändert? Und von wem?
 Paralleles Verändern von Dateien ist möglich, Änderungen werden u. U. wieder überschrieben
- Welche Version des Programms wurde getestet? Ohne klare Versionsangaben wird das Testen und die Testauswertung erschwert!

Certified Tester Foundation Level

© trendig technology services GmbH

358

- V. Testmanagement »
- 4. Konfigurationsmanagement

Anforderungen an das Konfigurationsmanagement

Aus der Sicht des Testens muss ein Konfigurationsmanagement mindestens die folgenden Anforderungen erfüllen

- Protokollierung von Kommentaren und Änderungsgründen
- Konfigurationsverwaltung
 Bestimmung und Verwaltung aller Dateien in der jeweiligen Version, die zu einem Teilsystem zusammengesetzt werden können
- Statusverfolgung
 Die Verfolgung von Fehlermeldungen und Änderungen, Aufzeichnung von
 Problemberichten und die Möglichkeit, deren Umsetzung nachzuvollziehen

Zusammenfassung

- Ein Konfigurationsmanagement wird benötigt, um die Testobjekte und deren Versionsstände geeignet zu verwalten
- Build- und Release-Informationen werden gespeichert, damit ältere Releasestände später rekonstruiert werden können
- Konfigurationsmanagement wird für den gesamten Softwareentwicklungslebenszyklus genutzt, auch für den Testprozess
- Ohne geeignete Werkzeuge ist Konfigurationsmanagement kaum möglich

Certified Tester Foundation Level

© trendig technology services GmbH

360

V. Testmanagement » Agenda

Kapitel V – Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiko und Testen
- V/6 Fehlermanagement

Risiko - Begriffsdefinition

Risiko (risk)

Ein Faktor, der zu negativen Konsequenzen in der Zukunft führen könnte; gewöhnlich ausgedrückt durch die Eintrittswahrscheinlichkeit und das Schadensausmaß.

- Ein Risiko ist die Wahrscheinlichkeit des Eintretens eines negativen Ereignisses multipliziert mit dem finanziellen Ausmaß
- Schadenshöhe × Eintrittswahrscheinlichkeit = Risikozahl (Risikostufe meist gemessen in H=Hoch, M=Mittel, N=Niedrig)
- Risiko (aus: "Waltzing with bears", Tom DeMarco / Timothy Lister")
 - 1. Ein mögliches, künftiges Ereignis, das zu unerwünschten Folgen führt
 - 2. Diese Folgen selbst
- Projekt- und Produktrisiken sollten bei der Gestaltung und Planung der Tests, bei der Auswahl und Priorisierung der Tests, bei der Wahl der Testmethoden und bei der Testdurchführung berücksichtigt werden

* "Waltzing with Bears", Tom DeMarco / Timothy Lister; Deutsch: Bärentango – Buchtipp

Certified Tester Foundation Level

© trendig technology services GmbH

362

V. Testmanagement » 5. Risiko und Testen

Projektrisiken – Kategorisierung

1 von

Projektrisiken beeinflussen Entwicklung und Test, gefährden Projektziele

a) Projektprobleme

- o Fehlerhafter Zeitplan des Projektes, späte Änderungswünsche, Überarbeitungen
- o Verzögerungen bei Lieferungen, Aufgabenerfüllung, Endekriterien, Definition-of-Done
- o Ungenaue Schätzungen, Umpriorisierungen von Mitteln, Kosteneinsparungen

b) Unternehmensprobleme

- o Zur Verfügung stehende Mitarbeiter, Qualifikation der zur Verfügung stehenden Mitarbeiter
- o Zwischenmenschliche Probleme / Teambuilding (auch: Anerkennen von Testergebnissen)
- Mangelnde Kooperation beteiligter Abteilungen / Interessenkonflikte / Fachexperten

c) Politische Probleme

- o Tester und Testergebnisse werden nicht ausreichend wahrgenommen
- Erkenntnisse zur Testprozessverbesserung (Analyse von Tests und Reviews) werden nicht weiterverfolgt oder umgesetzt
- o Keine Wertschätzung gegenüber Testern und Fehlerfindung während des Testens

Projektrisiken – Kategorisierung

2 von 2

d) Technische Probleme

- o Anforderungen können nicht gut genug definiert sein (männlicher Internetauftritt, innovativ, ...)
- Anforderungen können unter den gegebenen Randbedingungen nicht erfüllt werden
- Bei Migrationen verspätete Datenkonvertierung, Migrationsplanung und -entwicklung, Tests der Datenkonvertierung oder Migrationswerkzeuge
- Schwächen im Entwicklungsprozess wie geringe Qualität des Designs, des Codes, der Konfigurationsdaten, der Testdaten und der Tests
- Schlechtes Fehlermanagement, kumulierte Fehlerzustände, technische Schulden
- Nicht rechtzeitige Verfügbarkeit von Testumgebungen

e) Lieferantenprobleme

- o Zulieferung von Modulen / Software nicht in Time / Budget / Quality
- Vertragsaspekte bei Zulieferungen und Abnahmen
- o Veränderungen von gesetzlichen oder sonstigen einzuhaltenden externen Regularien

Projektmanager verantworten den Umgang mit Projektrisiken, Testmanager den mit testbezogenen Projektrisiken

Certified Tester Foundation Level

© trendig technology services GmbH

364

V. Testmanagement »5. Risiko und Testen

Produktrisiken – Qualitätsrisiken

Produktrisiken resultieren aus Nichterfüllung der Erwartungen des Nutzers

- o Gelieferte fehlerhafte Software, gemäß Spezifikation
- o Schlechte Softwareeigenschaften (funkt. und nicht-funkt. Qualitätsmerkmale)
- Das Produkt erfüllt nicht den geforderten Einsatzzweck und kann somit nicht eingesetzt werden
- o Die Software verursacht Sach- oder Personenschäden
- Die Systemarchitektur unterstützt nicht-funktionale Anforderungen nicht angemessen
- o Berechnungen nicht korrekt durchgeführt; Regelkreisverfahren nicht korrekt gebaut
- Antwortzeiten nicht angemessen
- o Benutzermeldungen entsprechen nicht den Erwartungen (Fehlermeldungen)

Produktrisiken zu spezifischen Qualitätsmerkmalen, wie z.B. Funktionalität, Zuverlässigkeit oder Wartbarkeit werden auch **Qualitätsrisiken** genannt

Testen dient dazu, Produktrisiken zu vermindern oder zu vermeiden, also die Eintrittswahrscheinlichkeit von Produktrisiken zu senken

Risikobasiertes Testen und Produktqualität

- Risiken in Risikoliste erfassen "Gefahr erkannt, Gefahr gebannt", die Risikoliste muss regelmäßig aktualisiert werden
- Risiken und Testen werden genutzt, um
 - o Den Testaufwand risikobasiert zu bündeln; was sollte wann mit Methodik und in welcher Intensität getestet werden
 - o Risiken zu beherrschen, also eine Bewertung der identifizierten Risiken und Restrisiken (nicht gelösten Risiken) abzugeben
 - Die Eintrittswahrscheinlichkeit eines unerwünschten Ergebnisses und seiner Auswirkungen zu reduzieren (Reduzierung der Stufen des Produktrisikos)
- Überblick Produktrisikoanalyse
 - Produktrisiko: Identifizierung, Beurteilung der Wahrscheinlichkeit und Auswirkung
 - Produktrisikoinformation hat Auswirkung auf die Lenkung von Testplanung, Spezifikation, Vorbereitung und Durchführung von Testfällen, Testüberwachung und Teststeuerung
 - Eine frühe Analyse der Produktrisiken trägt zum Projekterfolg bei

Certified Tester Foundation Level

© trendig technology services GmbH

- V. Testmanagement »
- 5. Risiko und Testen

Risikobasiertes Testen und Produktqualität

Nutzung der Ergebnisse aus der Produktrisikoanalyse

- o Testverfahren geeignet auswählen, um die Risiken zu mindern
- o Bestimmung der Teststufen und Testarten (IT-Sicherheitstests, Barrierefreiheit)
- o Testumfang, optimaler Einsatz der Testressourcen zur Risikoreduktion
- o Priorisieren der Tests, um kritische Fehlerzustände so früh wie möglich zu finden
- Prüfung, ob zusätzlich zum Testen noch weitere Aktivitäten notwendig sind wie Schulungen für unerfahrene Designer
- Risikomanagementaktivitäten

Risikomanagementaktivitäten von identifizierten Produktrisiken:

- Analyse und Neubewertung von Risiken, was kann falsch laufen
- Festlegung, welchen Risiken behandelt werden müssen
- Aktiv Maßnahmen ergreifen, die das Risiko vermindern
- Schaffung von Notfallplänen für den Fall des Risikoeintritts, Budget und Ressourcen bereithalten, sollte das Risiko eintreten

Zusammenfassung

- Projekt- und Produktrisiken gefährden den Projekterfolg und müssen gemanagt werden
- Produktrisiken beziehen sich auf das gelieferte Softwareprodukt und dadurch nicht erfüllte Bedürfnisse der Nutzer und Stakeholder
- Projektrisiken unterscheiden sich in Projekt-, Unternehmens-, Politische, Technische und Lieferantenprobleme
- Risikohöhe = Eintrittswahrscheinlichkeit × Schadenshöhe
- "Risikomanagement ist Projektmanagement für Erwachsene"

Certified Tester Foundation Level

© trendig technology services GmbH

368

V. Testmanagement » Agenda

Kapitel V – Testmanagement

- V/1 Testorganisation
- V/2 Testplanung und -schätzung
- V/3 Testüberwachung und -steuerung
- V/4 Konfigurationsmanagement
- V/5 Risiko und Testen
- V/6 Fehlermanagement

Fehlerfindung während des Testens (defect management)

- Der Fehlermanagementprozess dient der Erkennung, Untersuchung, Maßnahmenergreifung und Behebung von Fehlerzuständen. Dazu gehört deren Protokollierung, Klassifizierung und Analyse der Auswirkung
- Das Finden von Fehlerzuständen ist eines der Ziele des Testens
- Fehlerzustände sollten aufgezeichnet werden, der Inhalt variiert
 - o Abhängig vom Kontext wie Komponente, System, Teststufe, SW-Entw.-Modell
- Alle identifizierten Fehlerzustände werden untersucht
 - o Entdeckung, Klassifizierung, Korrektur, Lösung, Nachtests, Bewertung
- Fehlermanagementprozess dient zur Verwaltung der Fehlerzustände
 - Workflow und Regeln für alle beteiligten Parteien (Designer, Entwickler, Tester, Product Owner), je nach Organisation formal bis informell

Certified Tester Foundation Level

© trendig technology services GmbH

370

V. Testmanagement » 6. Fehlermanagement

Fehlermanagementprozess

1 von 2

Im Fehlermanagement werden **alle gefundenen Fehlerwirkungen bzw. Abweichungen** im Projekt protokolliert

Neben der reinen Erfassung und Verwaltung werden noch weitere Angaben zu den einzelnen Fehlermeldungen hinterlegt

Alle Informationen werden in einem zentralen Fehlermanagementwerkzeug gespeichert

- o Hier ist eine redundanzfreie Bearbeitung möglich
- Gewährleistung einer optimale Übersicht über die gefundenen Fehlerzuständeund deren Bearbeitung
- Übernimmt automatische Einträge von Kennung, Zuweisung, Aktualisierung des Status im Workflow und Benachrichtigung
- o Abweichende Dokumentation bei Fehlerzuständen aus statischen Tests, Reviews

Anmerkung: Fehlerwirkungen entdecken und **melden** können Tester, Kunde, Entwickler, Projektleiter, usw.

Fehlermanagementprozess

2 von 2

Nur mit einem funktionierenden Fehlermanagement kann eine geordnete Fehlerbearbeitung erfolgen

Aufbau des Fehlermanagements zu Beginn des Projektes

Ein korrekte Fehler- / Abweichungsprotokollierung umfasst unter anderem:

- o Vorgabe einheitlicher Meldungen / Meldeformulare
- Festlegung, dass alle Fehlerzustände / Probleme dort erfasst werden egal von welchem Beteiligten des Prozesses sie kommen und wo sie aufgetaucht sind
- o Eine feste Vorgehensweise für die Behandlung von Fehlerzuständen

Standards für Klassifizierungen von Fehlern definieren

- o Fehlerzustände können auf verschiedenen Wegen gefunden werden
 - Kodierung, statische Analyse, Reviews, dynamischem Testen
- o Fehlerzustände können in unterschiedlichen Arbeitsergebnissen gefunden werden
 - Anforderungen, User-Stories, Abnahmekriterien, Testdokumenten, Installationsanleitungen
- o Standards gewährleisten einen effektiven, effizienten Fehlermanagementprozess

Certified Tester Foundation Level

© trendig technology services GmbH

270

- V. Testmanagement »
- 6. Fehlermanagement

Aufgabenverteilung

1 von

- Tester
 - o Führt Tests durch, um Fehlerzustände aufzudecken
 - Protokolliert die Ergebnisse (Testprotokoll)
 - Stellt die Fehlerwirkungen in die Datenbank / das Tool ein (Fehler- bzw. Abweichungsbericht)
 - Falsch-positive Ergebnisse Anomalie
 - Keine echten Fehlerwirkungen auf Basis von Fehlerzuständen z.B. Unterbrechung der Netzwerkverbindung, Time-out
 - Tester sollten die Anzahl der falsch-positiven Fehlerberichte reduzieren
- Testmanager
 - o Wertet die Fehlerberichte aus (Qualität der Arbeitsergebnisse)
 - Vergibt Prioritäten (Auswirkung auf das Testen)
 (nach Abstimmung mit Projektleiter, Kunde, ...)
 - Liefert Ideen für die Verbesserung der Entwicklung und des Testprozesses

Aufgabenverteilung

2 von 2

- Entwickler
 - Analysiert Fehlerwirkungen und lokalisiert Fehlerzustände (~ Debugging)
 - o Korrigiert die Fehlerzustände gemäß ihrer Priorität
 - o Führt alle genehmigten Änderungen durch
- Aufgaben werden in einem iterativen Prozess erledigt
 - Tester
 - Testmanager
 - Änderungsmanagement (oder CCB)
 - Entwickler
 - o Tester...
- Änderungsmanagement oder Change Control Board (CCB)
 - o Trifft Entscheidung über Änderungen und deren Priorisierung

Certified Tester Foundation Level

© trendig technology services GmbH

374

Aufbau des Fehlerberichts (incident logging)

1 von 2

Ein Fehlerbericht während des dynamischen Tests beschreibt die **Fehlerwirkung**, nicht die Fehlerursache!

Muster für einen Fehlerbericht: ISO 29119-3 (Anomaly Report)

Der Fehlerbericht sollte mind. folgende Punkte umfassen

- Fehlerdaten
 - Eindeutige Identifikation (z. B. fortlaufend zu vergeben)
 - Titel und kurze Zusammenfassung des Fehlerzustands
 - Angaben zum Testobjekt (Name, Version) und der Testumgebung
 - Meldungsdatum des Fehlerberichts, Verfasser, Organisation
- Einordnung des Fehlerzustandes
 - Fehlerklasse (Schwere der Fehlerwirkung)
 - Priorität (Einschätzung zur Dringlichkeit)
 - Fehlerstatus (Neuer Fehlerzustand, Nachtest etc.)

Aufbau des Fehlerberichts

Der Fehlerbericht sollte mindestens folgende Punkte umfassen

Beschreibung

- Referenzen wie den ausgeführten Testfall (liefert alle Angaben zu den Bedingungen)
- Fehlerwirkung (anhand der Darstellung der vorausgesagten Ergebnisse und der abweichenden Ist-Ergebnisse)
- Beschreibung des Fehlerzustands zur Reproduzierbarkeit (Screenshots, Protokolle, Datenbank-Dumps, Aufnahmen)
- Phase des Entwicklungslebenszyklus, in der der Fehlerzustand gefunden wurde
- Querverweise zu verwandten Meldungen
- Schlussfolgerungen, Empfehlungen, Freigaben
- Allgemeine Probleme und andere Bereiche, die ggf. durch die Änderung betroffen sind, die aus diesem Fehlerzustand resultiert

Verwaltungsdaten

 Änderungshistorie, Reihenfolge der Aktionen, die ausgeführt wurden, um den Fehlerzustand zu isolieren, reparieren und als behoben zu bestätigen (Veränderungen im Lebenszyklus des Fehlerberichts sollten automatisch von der Fehlerdatenbank mitgeführt werden)

Certified Tester Foundation Level

© trendig technology services GmbH

- V. Testmanagement »
- 6. Fehlermanagement

Einordnung des Fehlerzustands

- Fehlerklasse
 - Die Schwere eines Fehlers wird in der Fehlerklasse ausgedrückt
 - o Fehlerklassen können frei gebildet werden (meist drei bis vier Fehlerklassen)
 - o Fehlerklassen beschreiben Stufen wie: kritische, schwere, mittlere, leichte Fehler
 - o Grundlage für die Klassifizierung kann der Grad der Beeinträchtigung des Produkteinsatzes sein (DIN 66271)

Beispie

el	Klasse	Bedeutung
	1 – Kritisch	Systemabsturz mit ggf. Datenverlust; das Testobjekt ist in dieser Form nicht einsetzbar "nichts geht mehr"
	2 – Hoch	Wesentliche Funktion ist fehlerhaft; Anforderung nicht beachtet oder falsch umgesetzt; das Testobjekt ist nur mit großen Einschränkungen einsetzbar "ich kann die Maske nicht nutzen"
	3 – Mittel	Funktionale Abweichungen bzw. Einschränkungen; Anforderungen fehlerhaft oder nur teilweise umgesetzt; System kann mit Einschränkungen genutzt werden, "ich kann weiterarbeiten"
	4 – niedrig	Geringfügige Abweichung; System kann ohne Einschränkung genutzt werden (Beseitigung hat mit dem nächsten Release zu erfolgen) "besser nutzbar wäre es, wenn…"
	5 – Kosmetisch	Schänbeitefebler: System konn ohne Einschränkungen genutzt werden (Reseitigung

Einordnung des Fehlerzustands

2 von 2

- Dringlichkeit, Priorität der Behebung
 - Fehlerschwere, Bewertung der Auswirkungen des Fehlerzustandes
 - o Einfluss auf Projektverlauf etc., wird das weitere Vorgehen im Prozess behindert?
 - o Umfang und Grad der Auswirkungen auf Stakeholder-Interessen
 - Möglichkeit der unmittelbaren Behebung bzw., mit der nächsten Überarbeitung des Testobjektes etc.
 - Die Abarbeitung / Korrektur der Fehlerzustände erfolgt entsprechend der gesetzten Prioritäten
- Beispiel

Bedeutung
Der Arbeitsablauf beim Anwender ist blockiert oder die laufenden Tests können nicht fortgesetzt werden. Das Problem muss unmittelbar, ggf. provisorisch, behoben werden; ein Patch ist zu erstellen
Die Fehlerkorrektur erfolgt mit der nächsten regulären Produktversion oder mit der nächsten Testobjektlieferung
Die Fehlerkorrektur erfolgt, sobald die betroffenen Systemteile ohnehin überarbeitet werden
Korrekturplanung ist noch zu treffen

Certified Tester Foundation Level

© trendig technology services GmbH

270

- V. Testmanagement »
- 6. Fehlermanagement

Einordnung des Fehlerzustands – Fehlerstatus

1 von 3

- Der Fehlerstatus gibt an, in welcher Bearbeitungsstufe sich der Fehlerzustand befindet, er beschreibt somit den Fehlerlebenszyklus
- · Mögliche Stufen sind dabei z.B.
 - o Offen, neu Fehlerzustand wurde vom Tester neu angelegt
 - o Offen, qualifiziert Meldung wurde vom Testmanager freigegeben
 - o Zurückgewiesen Meldung wurde vom Testmanager abgewiesen
 - Wartet auf Behebung Entwickler versucht den Fehlerzustand zu identifizieren
 - Behebung Fehlerzustand ist gefunden und wurde für die Korrektur freigegeben (andernfalls wird der gefundene Fehlerzustände abgewiesen)
 - o Wartet auf Fehlernachtest wird vom Entwickler nach Korrektur vergeben
 - Geschlossen / Erledigt wird vom Tester vergeben, wenn der Fehlerzustand laut Nachtest beseitigt ist
 - Offen, alt wird vom Tester vergeben, wenn der Fehlerzustand weiterhin auftritt

Einordnung des Fehlerzustands – Fehlerstatus

2 von

Folgende Zustandsübergänge können vergeben werden (Beispiel)

Certified Tester Foundation Level

© trendig technology services GmbH

380

- V. Testmanagement »
- 6. Fehlermanagement

Einordnung des Fehlerzustands – Fehlerstatus

3 von

Nur der Tester kann einen Fehlerbericht als erledigt bzw. geschlossen abhaken!

Ob ein Fehler **zurückgewiesen** oder **bearbeitet** wird, entscheidet der **Testmanager** bzw. das **Änderungsmanagement** auf Basis der dann vorliegenden Informationen zum Fehlerzustand und den Kosten für dessen Beseitigung

Alle **Veränderungen** werden mit Kommentaren im **Fehler** / **Abweichungsmanagement** erfasst

- Eine ständige Kontrolle über die Abarbeitung ist gegeben
- o Der weitere Testverlauf lässt sich bestimmen
- Ggf. müssen weitere Testfälle generiert werden, wenn der betreffende Fehlerzustand nicht über interne Tests entdeckt wurde, sondern z. B. vom Kunden gemeldet wurde

Auswertungen der Fehlerberichte

Die Fehlerberichte werden systematisch ausgewertet, um den Abarbeitungsstand der Fehlerzustands zu verfolgen und daraus Informationen über die Einhaltung der Projekt- und Testpläne sowie das erreichte Qualitätsniveau der Software zu gewinnen

Typische Berichte / Auswertungen

- Zeigt sich eine Zunahme oder Abnahme der neu gemeldeten / offenen Fehler im Projektverlauf?
- In welchen Testobjekten häufen sich die Fehler? In welchen sind unterdurchschnittlich viele Fehler gefunden worden?
- o Wie viele schwere Fehler / Fehler mit hoher Priorität sind noch offen?
- o Wie lang sind die Fehlerbearbeitungszeiten / Durchlaufzyklen?
- o Wie kann die Entwicklung und der Testprozess verbessert werden?
- Wie hoch ist die Qualit\u00e4t der Arbeitsergebnisse und welche Auswirkung hat das auf das Testen?

Certified Tester Foundation Level

© trendig technology services GmbH

382

Übung IV.1: Fehlermanagement

(10 Min. Einzelarbeit / 15 Min. Ergebnisdiskussion)

- · Schreiben Sie einen Fehlerbericht über den gesamten Fehlerverlauf
- Thema
 Der Geldautomat hat Ihnen trotz korrekter PIN kein Geld ausgezahlt

Zusammenfassung

- Fehlermanagement ist die Verwaltung der beim Test gefundenen Abweichungen (Inhalte der Meldungen, Prozesse zur Behebung)
- Die Behandlung von Fehlerzuständen / Abweichungen ist ein eigener Prozess mit einem hierfür angepassten Workflow
- Für das Fehlermanagement stehen leistungsstarke Tools zur Verfügung, die auch Änderungsmanagement unterstützen
- Der Begriff Abweichungsmanagement wird synonym zu Fehlermanagement verwendet

Certified Tester Foundation Level

© trendig technology services GmbH

201

V. Testmanagement » Schlüsselbegriffe

Schlüsselbegriffe

- Eingangskriterien
- Endekriterien
- Fehlerbericht
- Fehlermanagement
- Konfigurationsmanagement
- Produktrisiko
- Projektrisiko
- Risiko
- Risikobasiertes Testen
- Risikostufe
- Testabschlussbericht
- Tester
- Testfortschrittsbericht
- Testkonzept
- Testmanager

- Testplanung
- Testschätzung
- Teststeuerung
- Teststrategie
- Testüberwachung
- Testvorgehensweise

Certified Tester Foundation Level

© trendig technology services GmbH

VI. Werkzeugunterstützung für das Testen » Agenda

Kapitel VI – Werkzeugunterstützung für das Testen

- VI/1 Überlegungen zu Testwerkzeugen
- VI/2 Effektive Nutzung von Werkzeugen

VI. Werkzeugunterstützung für das Testen » Lernziele

Lernziele für Testwerkzeuge

6.1 Überlegungen zu Testwerkzeugen

FL-6.1.1 (K2)	Testwerkzeuge gemäß ihrem Zweck und den Testaktivitäten, die sie unterstützen, klassifizieren können
FL-6.1.2 (K1)	Nutzen und Risiken der Testautomatisierung identifizieren können
FL-6.1.3 (K1)	Sich an besondere Gesichtspunkte von Testdurchführungs- und Testmanagementwerkzeugen erinnern können

6.2 Effektive Nutzung von Werkzeugen

FL-6.2.1 (K1)	Die Hauptprinzipien für die Auswahl eines Werkzeugs identifizieren können
FL-6.2.2 (K1)	Sich an Ziele für die Nutzung von Pilotprojekten zur Einführung von Werkzeugen erinnern können
FL-6.2.3 (K1)	Erfolgsfaktoren für die Evaluierung, Implementierung, Bereitstellung und kontinuierliche Unterstützung von Testwerkzeugen in einem Unternehmen identifizieren können

Certified Tester Foundation Level

© trendig technology services GmbH

388

VI. Werkzeugunterstützung für das Testen » Agenda

Kapitel VI – Werkzeugunterstützung für das Testen

- VI/1 Überlegungen zu Testwerkzeugen
- VI/2 Effektive Nutzung von Werkzeugen

Allgemeines

Testaktivitäten können durch Testwerkzeuge unterstützt werden

- a) Werkzeuge, die für Tests genutzt werden (Testausführungswerkzeuge, Testdateneditoren, Testdatengeneratoren)
- b) Werkzeuge, die beim Verwalten helfen von
 - Anforderungen, Testfälle, Testabläufe, automatisierte Testskripte, Testergebnisse, Testdaten, Abweichungen, Fehlerzuständen, u.v.m.

bzw. Unterstützung leisten im oder beim

- Berichtswesen zur Fortschrittsüberwachung
- Steuerung der Testdurchführung
- c) Werkzeuge, die zur Untersuchung und Bewertung genutzt werden
- d) Werkzeuge, die in irgendeiner Form das Testen unterstützen können (wie Tabellenkalkulationsprogramme)

Certified Tester Foundation Level

© trendig technology services GmbH

300

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Klassifizierung von Testwerkzeugen – Zwecke

- Verbesserung der Effizienz der Testaktivitäten
 - o Verlagerung von manuellen Aktivitäten auf das Werkzeug, Automatisierung
 - o Erhebliche Einsparung von Ressourcen bei sich wiederholenden Tätigkeiten
- Effizienzverbesserung durch Unterstützung von manuellen Testaktivitäten
- Verbesserung der Qualität der Testdurchführung
 - o Wiederholungen identischer Tätigkeiten, Regressionstests
 - o Bessere Konsistenz und höhere Fehlerreproduzierbarkeit
- Automatisierung von manuell nicht durchführbaren Tests (z.B. Performancetest)
- Verbesserte Zuverlässigkeit des Testens
 - Datenhaltung in Testwerkzeugen ermöglicht vielfältige Auswertungen
 - Automatisierter Abgleich großer Datenmengen
 - Vereinfachter Zugriff auf Informationen über durchgeführte Tests wie Statistiken, Testfortschritt, Fehlerrate, etc.

1. Überlegungen zu Testwerkzeugen

Klassifizierung von Testwerkzeugen – Beispiele

1 von 2

- Kriterien zur Klassifizierung von Werkzeugen
 - o Zweck, Preis
 - o Lizenzmodell: kommerziell / kostenlos / Open-Source / Shareware
 - Verwendete Technologie
- Testwerkzeuge können mehr als einer Aktivität dienen
 - Einzel-Tools, die eine fest umrissene Aufgabe haben also eine dedizierte Testaktivität unterstützen
 - Tool-Suiten, die mehrere Aufgabenbereiche abdecken und bei denen die Einzel-Tools miteinander integriert sind
- Intrusive Testtools haben Einfluss auf das Testobjekt
 - o Intrusive Tools nehmen direkt Einfluss auf das Testobjekt
 - o Bei **Performance-Tests** kann es daher Beeinflussungen geben
 - Bei Systemtests sollen die Testobjekte im Produktions-Timing miteinander arbeiten, intrusive Werkzeuge sollten dann abgeschaltet sein

Certified Tester Foundation Level

© trendig technology services GmbH

302

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Klassifizierung von Testwerkzeugen – Beispiele

2 von 2

- Testwerkzeuge f
 ür spezifische Anwendungsbereiche, z.B.
 - o Für bestimmte Applikationstypen wie Webanwendungen
 - o Für bestimmte Entwicklungsumgebungen wie Java
 - o Für bestimmte nicht-funktionale Tests wie Sicherheitsprüfungen
- Selbst erstellte Testwerkzeuge, z.B.
 - Excel-Tabellen
 - SQL-Skripte
 - o spezifische Datenbanken zur Testdatenverwaltung
 - spezifische Komparatoren zum Soll-Ist-Abgleich

Hinweis: Werkzeuge zur Unterstützung von **Entwicklern** werden im folgenden als (Entwicklerwerkzeug) gekennzeichnet

Typen von Testwerkzeugen

Certified Tester Foundation Level

© trendig technology services GmbH

394

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Werkzeugunterstützung für statische Tests

- Statische Analysewerkzeuge (Entwicklerwerkzeug)
 - o Einhaltung von Programmierrichtlinien / Konventionen
 - o Unterstützung bei der Planung und auch bei der Risikoanalyse
 - Strukturanalyse von Quellcode
 (z. B. prüfen von Links auf Gültigkeit im HTML-Code)
 - Analysator zur Auswertung von Quellcode, ermitteln von Metriken (z. B. der zyklomatischen Zahl) oder Identifizierung von Anomalien (Toter Code, Datenflussanomalien, Kontrollflussanomalien)

Werkzeuge für das Management des Testens und für Testmittel

1 von 3

Testmanagementwerkzeuge und ALM-Werkzeuge*

- Erfassung, Kategorisierung und Verwaltung von Testfällen
- o Auswertungen / Erhebung von Metriken, die auf Testfällen beruhen
- o Zeit- und Ressourcenplanung, Budgetplanung
- Schnittstellen zu Testauswertungs-, Fehlerverfolgungs- und Anforderungsmanagement-Werkzeugen
- o unabhängige Versionskontrolle oder Schnittstelle zum entsprechenden Tool
- Verfolgbarkeit von Tests, Testergebnissen, Spezifikationen
- Erstellung von Berichten zur Testplanung
- Aufzeichnung von Testergebnissen
- o Generierung von Fortschrittsberichten
- o Quantitative Analyse (Metriken) zum Steuern und Verbessern des Testprozesses

Certified Tester Foundation Level

© trendig technology services GmbH

30

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Werkzeuge für das Management des Testens / Testmittel

2 von 3

- Anforderungsmanagementwerkzeuge
 - o strukturierte Erfassung von Systemanforderungen (Requirements)
 - o Priorisierung von Anforderungen
 - Verknüpfung der Anforderungen mit Testfällen (Verfolgbarkeit zu Testobjekten)
 - o Konsistenzprüfungen / Auswertungen (z. B. zu Überdeckungen)
- Fehlermanagementwerkzeuge
 - Erfassung und Verfolgung von Fehlerberichten (Fehlerzustände, Änderungsanforderungen (change requests), Fehlerwirkungen und wahrgenommene Probleme und Anomalien)
 - o Priorisierung, Kategorisierung, Sortierung von Abweichungen
 - o Auswertungen wie Testmetriken, Testfortschrittsgrade
 - Workflow zur Abweichungs-Bearbeitung (Statuswechsel, Zuständigkeiten)

^{*} Application Lifecycle Management

Werkzeuge für das Management des Testens / Testmittel

- Konfigurationsmanagementwerkzeuge
 - o Informationen über Versionen von Komponenten
 - Verwaltung von Komponenten bzw. deren Sourcecode
 - o Verfolgbarkeit von Software-Produktkomponenten, den Varianten und Testmitteln, Verknüpfung mit Testmanagement / Anforderungsmanagement
 - Verwaltung von mehreren Konfigurationen, Hard- und Softwareumgebungen (Bibliotheken, Browser, Rechner, etc.)
- Werkzeuge zur continous integration (Entwicklerwerkzeug)
 - o Statische Codeanalyse und Lieferung der Ergebnisse
 - Kompilieren und Linken des Codes, Erstellung einer ausführbaren Datei (Automatisierung des Buildprozesses)
 - Durchführung von Unit-Tests, Prüfung der Codeüberdeckung
 - Werkzeuge zur Versionskontrolle
 - Regelmäßige Pflege der Werkzeuge ist notwendig

Certified Tester Foundation Level

© trendig technology services GmbH

VI. Werkzeugunterstützung für das Testen » 1. Überlegungen zu Testwerkzeugen

Werkzeugunterstützung für Testentwurf und -realisierung 1 von 2

- Testentwurfswerkzeuge, die aus den Anforderungen, der graphischen Benutzeroberfläche (GUI), dem Entwurfsmodell (Zustands-, Daten- oder Objektmodell) oder aus dem Code Folgendes generieren können
 - o Testeingaben, ausführbare Tests, Testorakel
- Testwerkzeuge für modellbasiertes Testen (MBT)
 - o Nutzung formaler Modelle, um das Systemverhalten zu beschreiben
 - o Bereitstellen von Funktionen zum Ausführen der Modelle
 - o Generieren großer Mengen unterschiedlicher Ausführungssequenzen
 - o Exportieren der Ausführungssequenzen als Testfälle
 - Testen mit anderer Sichtweise auf das Testobjekt
 - o Gefunden werden Fehlerzustände, die bei anderen Tests übersehen werden
 - o Die Erstellung der automatisierten Tests erfolgt (teil-)automatisiert
 - o Die Testfallentstehung ist steuerbarer und transparenter
 - o Die Testqualität kann personenunabhängiger gestaltet werden

Werkzeugunterstützung für Testentwurf und -realisierung 2 von 2

- Testdatengeneratoren und -editoren
- Erzeugung und Bearbeitung von Testdaten, z.B. zur Anonymisierung zur Einhaltung des Datenschutzes
- Datenbankbasierte Testdatengeneratoren
 - o Erkennen Strukturen und Inhalte aus Datenbanken oder Dateien und leiten Testdaten daraus ab
- Codebasierte Testdatengeneratoren, Erzeugen Testdaten aus dem Quellcode
- Schnittstellenbasierte Testdatengeneratoren
 - o Erzeugen Testdaten auf Basis von Schnittstellenparametern
 - Leiten aus den Definitionsbereichen Äquivalenzklassen und Grenzwerte ab
- Spezifikationsorientierte Testdatengeneratoren
 - Erzeugen Testdaten aus einer formalen Notation einer Anforderung (Case-Tools)

Certified Tester Foundation Level

© trendig technology services GmbH

400

VI. Werkzeugunterstützung für das Testen » 1. Überlegungen zu Testwerkzeugen

Werkzeuge für Testdurchführung und -protokollierung

Es gibt verschiedene Tools, die den Tester in Abhängigkeit der jeweiligen Teststufe bei der Testdurchführung entlasten können

- Testausführungswerkzeuge übernehmen folgende Aufgaben
 - o Datenanlieferung und Datenempfang oder Protokollierung des Ausgabeverhaltens
 - Protokollierung der Testdurchführung
 - Halb- / automatisierte Testdurchführung mit gespeicherten Daten
 - Unterstützung von Skriptsprachen
 - GUI-basierte Konfigurationen zur Parametrisierung der Daten oder für spezifische Anwendungen
 - Nützlich für Regressionstests

Werkzeuge für Testdurchführung und -protokollierung

- Testrahmen / Simulatoren / Komponententestrahmen (Entwicklerwerkzeug)
 - o Tool, das die Produktivumgebung (oder einen Teil davon) nachbildet, nach Möglichkeit eins-zu-eins
 - o Unittest-Framework oder Testrahmen erleichtern den Test einer Komponente oder eines Teilsystems
 - Simulation der Umgebung des Testobjekts
 - Scheinobjekte (Simulatoren) als Treiber und / oder Platzhalter

Certified Tester Foundation Level

© trendig technology services GmbH

VI. Werkzeugunterstützung für das Testen » 1. Überlegungen zu Testwerkzeugen

Werkzeuge für Testdurchführung und -protokollierung

- Komparatoren / Vergleichswerkzeuge
 - o Tools für den Vergleich von vorausgesagten und Ist-Ergebnissen
 - o Basis des Vergleichs können Datenbanken oder Dateien verschiedener Formate sein
 - o Relevante Daten für den Vergleich werden über Filterfunktionen etc. aussortiert
- Werkzeuge zur Überdeckungsmessung (Entwicklerwerkzeug)
 - o Tools, die die jeweilige Überdeckung für den Test liefern (White-Box-Tests)
 - o Über eine Instrumentierung werden Zähler installiert, die jeden Zugriff registrieren
 - Nach Testende k\u00f6nnen die Tools anhand der Z\u00e4hlerst\u00e4nde auswerten, welcher Überdeckung für den Test vorliegt (Anweisungs-, Entscheidungsüberdeckung)

Werkzeugunterstützung zur Performancemessung und dynamischen Analyse

1 von 2

- Last- / Performance- / Stresstestwerkzeuge
 - Tools, die das Laufzeitverhalten des Testobjekts in verschiedenen Situationen überwachen
 - Oft arbeiten diese Tools mit parametergesteuerten Wiederholungen von Testfällen, die automatisch ausgeführt werden
 - Performancetestwerkzeuge werden in der Regel bei Testobjekten eingesetzt, die verteilt sind (auf mehrere Tasks oder Systeme) und z. B. über Netzwerke kommunizieren
 - Meist ist dabei die Testumgebung nicht vollständig isoliert und unterliegt Einflüssen, die bei der Testvorbereitung und -durchführung nicht genau bekannt sind.
 Dadurch können die Testergebnisse verfälscht werden
 - Die Wiederholbarkeit von Tests mit identischen Testergebnissen ist oftmals nicht gegeben
 - Der Einsatz in komplexeren Systemumgebungen erfordert Spezialistenwissen, um keine verfälschten Ergebnisse zu erhalten (z. B. durch Netzwerk-Konstellationen)

Certified Tester Foundation Level

© trendig technology services GmbH

404

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Werkzeugunterstützung zur Performancemessung und dynamischen Analyse

2 von 2

- Dynamische Analysewerkzeuge (Entwicklerwerkzeug)
 - Tools für die unterstützende Analyse dynamischer Tests
 - Überwachung und Protokollierung des inneren Zustandes des Testobjektes (z. B. die Speicherverwendung, Speicherlecks, wilde Zeiger, Systemleistung, Netzwerkverhalten)
 - Einsatz im Komponententest oder bei Integrationstests
- Sonstiges zu Testwerkzeugen

Neben den Werkzeugen welche die Hauptaufgaben des Testers unterstützen gibt es Werkzeuge speziell für den **Test nicht-funktionaler Anforderungen**, wie zum Beispiel:

Benutzbarkeit, Sicherheit, Effizienz, Zuverlässigkeit

Testautomatisierung – Nutzen und Risiken

1 von 3

- Neue Werkzeuge garantieren nicht automatisch Erfolg
- · Aufwand ist erforderlich, um echten und dauerhaften Nutzen zu erzielen
- Potentieller Nutzen und die Risiken sollten betrachtet werden!
- Erwartungen an das eingesetzte Werkzeug Nutzen
 - o Reduktion sich wiederholender Arbeiten
 - o Regressionstests zur Sicherstellung der Altfunktionalität
 - o Wiederholbarkeit von Arbeiten
 - Testdatenerstellung in immer gleicher Art und Weise
 - Durchführung von Tests in immer gleichen Abläufen
 - o Generierte Metriken zur objektiveren Beurteilung (Überdeckung)
 - Generierung von Informationen für Statistiken, Graphiken, Testfortschritt, Fehlerraten
 - Durchführung und Wiederholen von Arbeiten, die manuell nicht oder nur mit erheblichem Aufwand zu leisten sind, wie Messungen von Performance, Last

Certified Tester Foundation Level

© trendig technology services GmbH

106

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Testautomatisierung – Nutzen und Risiken

2 von 3

- Erwartungen an das eingesetzte Werkzeug werden nicht erfüllt
 - o Funktionalität des Werkzeugs nicht wie erwartet
 - o Benutzerfreundlichkeit des Werkzeugs nicht wie erwartet
 - o Es lässt sich doch nicht so leicht anwenden oder anpassen
- Kein Ersatz für manuellen Testentwurf und Testdurchführung
- Fehler bei der Schätzung von Zeit, Kosten und Aufwand der Einführung
 - o Schulungen sind notwendig, externe Fachkenntnisse, kein Knowhow vor Ort
 - o Aufwand der Beschaffung, der Einführung oder des Betriebs unterschätzt
 - o Prozesse müssen angepasst werden, der Werkzeugeinsatz ist festgeschrieben
 - Ohne vorher Abläufe / Testprozesse selbst zu durchdenken und für das eigene Projekt geeignet festzulegen
- Aufwand für Wartung der Testarbeitsergebnisse
 - o Abläufe ändern sich, Schnittstellen werden geändert, Datenstrukturen erweitert

Testautomatisierung – Nutzen und Risiken

3 von 3

- Die Kontrolle der Testvorteile durch das Werkzeug wird vernachlässigt
- Vernachlässigen der Versionskontrolle von Testgegenständen im Testwerkzeug
- Keine Berücksichtigung von Schnittstellen zu anderen wichtigen Werkzeugen anderer Hersteller wie Anforderungsmanagement, Fehlermanagement, Konfigurationsmanagement etc.
- Das Risiko, dass der Hersteller "pleite" geht, das Werkzeug einzieht oder es an einen anderen Hersteller veräußert
- Mangelhafte Unterstützung durch den Hersteller beim Support, Updates oder der Fehlerbereinigung, Eigentumsverhältnisse ungeklärt
- Risiko der Einstellung von open-source oder freeware Werkzeugen
- Unvorhergesehenes wie keine Möglichkeit der Übernahme des Tools in eine andere Umgebung oder neue Technologie

Certified Tester Foundation Level

© trendig technology services GmbH

408

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Besondere Betrachtung der Testdurchführungs- und Testmanagementwerkzeuge

Testausführungswerkzeuge

- Führen Testobjekte aus
- Nutzen automatisierte Testskripte
- Erfordern oft einen erheblichen Aufwand, um Nutzen zu bringen
- Verwenden unterschiedliche Testautomatisierungsansätze

Die wichtigsten Testautomatisierungsansätze sind

- Aufgezeichnete Skripte
- Datengetriebener Ansatz
- Schlüsselwortgetriebener Ansatz

Testausführungswerkzeuge

1 von 3

Aufgezeichnete Testskripte (capturing test approach)

- Die einfache Aufzeichnung der Aktionen eines manuellen Testers genügt meist nicht – Testskripte müssen erstellt bzw. erweitert werden
- Oft eine lineare Repräsentation mit spezifischen Daten und Aktionen (linear scripting)
- Soll dasselbe Testscenario mit anderen Daten durchgeführt werden, müssen mit viel Aufwand alle Daten im Script einzeln gesucht und ersetzt werden
- Ungeeignet für eine große Anzahl von Testskripten
- o Beim Auftreten unerwarteter Ereignisse können Skripte dieser Art instabil werden
- o Setzen technische Kenntnisse in den Skriptsprachen voraus
- o Benötigen erwartete Ergebnisse für jeden Test zum späteren Vergleich

Eine stetige Wartung der Skripte ist erforderlich, besonders wenn Benutzerschnittstellen oder Abläufe weiterentwickelt werden

Certified Tester Foundation Level

© trendig technology services GmbH

410

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Testausführungswerkzeuge

2 von 3

Datengetriebener Ansatz (data driven approach)

- Die Skripte werden so erstellt, dass sie die Programmfunktionen des Testobjekts bedienen. Die Daten, die dabei verwendet werden, holt sich das Skript aus einer externen Datei / Tabellenblatt / Datenbank
- Tester, die neue oder veränderte Testfälle ausführen möchten, müssen nicht die Skripte, sondern nur die externe Datei anpassen
- Problem: veränderte Daten k\u00f6nnen die Reaktionen des Testobjekts ver\u00e4ndern, die ausf\u00fchrenden Skripte m\u00fcssen dies verkraften
- Problem: Wenn sich die GUI des Testobjekts im Laufe des Projekts ändert, kann es zu Ablaufschwierigkeiten der Skripte kommen

Durch **Trennung der Kontrollinformationen von den Daten** kann der Wartungsaufwand reduziert werden

Bei einer **erneuten Ausführung** des Skriptes mit anderen Daten muss nur das **Datenfile ersetzt** werden, am Skript sind keine Änderungen nötig

Testausführungswerkzeuge

3 von

Schlüsselwortgetriebener Ansatz (keyword driven approach)

- Die Skripte werden so modularisiert, das jedes einzelne Skript möglichst nur noch eine atomare Benutzerinteraktion des Testobjekts auslöst
- Zusätzlich zu den in einer externen Datei hinterlegten Testdaten werden auch noch die aufzurufenden Funktionen extern hinterlegt
- Ein Steuerskript wertet diesen extern hinterlegten Testablauf aus und ruft die Funktionen (inkl. Daten) programmgesteuert ab
- Die Tester k\u00f6nnen so, ohne die Skripte selbst zu modifizieren, sehr flexibel
 Testabl\u00e4ufe der Testroboter steuern
- Extern zuzusteuernden Daten werden schnell sehr komplex

Für den Einsatz von Testrobotern ist auf jeden Fall **Entwicklungs-Know-how** / **Skripting-Know-how** notwendig

Die **vorausgesagten Ergebnisse** der Tests sollten ebenfalls für maschinelle Auswertungen **verfügbar** sein, ansonsten nutzt man nicht das gesamte zur Verfügung stehende Potential

Certified Tester Foundation Level

© trendig technology services GmbH

415

VI. Werkzeugunterstützung für das Testen »

1. Überlegungen zu Testwerkzeugen

Testmanagementwerkzeuge

Einsatz integrierter Testmanagementwerkzeuge (z.B. ALM)

Schnittstellen zu anderen Werkzeugen (Testauswertungs-, Fehlerverfolgungs- und Anforderungsmanagement-Werkzeugen, Tabellen)

- o Sammlung wichtiger Informationen, abgestimmt auf die Organisation
- Aufzeichnung von Testergebnissen
- o Generierung von Fortschrittsberichten
- o unabhängige Versionskontrolle, Schnittstellen zum Konfigurationsmanagementtool
- o Verfolgbarkeit von Tests, Testergebnissen zu Anforderungen

Bei Nutzung durch verschiedene Gruppen sollte aus verschiedenen Aspekten auf Schnittstellen geachtet werden

- Projektplanungs- und -steuerungsinformationen
- Budgetinformationen
- o Quantitative Analyse (Metriken) zum Steuern und Verbessern des Testprozesses

Kapitel VI – Werkzeugunterstützung für das Testen

- VI/1 Typen von Testwerkzeugen
- VI/2 Effektive Nutzung von Werkzeugen

Certified Tester Foundation Level

© trendig technology services GmbH

ma

VI. Werkzeugunterstützung für das Testen » 2. Effektive Nutzung von Werkzeugen

Hauptgrundsätze für die Auswahl von Werkzeugen

1 von :

Grundsätzliche Überlegungen zur Auswahl von Testwerkzeugen

- o Bewertung der Reife des Unternehmens
 - Wo hat die Testorganisation Schwächen, wo Stärken?
 - Wo kann der Testprozess durch ein Werkzeug unterstützt und verbessert werden?
- Kompatibilität des Werkzeuges mit der eingesetzten Technologie und den Testobjekten
- Passt das Werkzeug zu bereits eingesetzten Werkzeugen für Build und continuous integration?
- Anforderungsdefinition: Anforderungen an das Werkzeug spezifizieren, objektive, messbare Kriterien verwenden (z. B. Anforderungsmatrix mit gewichteten Anforderungen)
- o Steht das Werkzeug für eine kostenlose Testperiode zur Verfügung und wie lange?
- o Installation des Werkzeugs in der Systemumgebung
- o Ggf. Anpassung des Werkzeugs bzw. Parametrierung
- o Sicherstellen des Systembetriebs, Administrationsaufwand

Hauptgrundsätze für die Auswahl von Werkzeugen

2 von 2

Grundsätzliche Überlegungen zur Auswahl von Testwerkzeugen

- Evaluation der Anbieter und des Schulungsbedarfs: Herstellerqualifikation prüfen (z. B. Trainingsunterstützung, Support, kommerzielle und vertragliche Aspekte)
- Gibt es interne Anforderungen nach Coaching und Anleitung zur Nutzung der Werkzeugs
- Identifizieren des Schulungsbedarfs (sind Test- und Testautomatisierungskenntnisse vorhanden)
- Abwägen verschiedener Lizenzmodelle (kommerziell / open source)
- Beurteilung der Kosten-Nutzen-Analyse anhand eines konkreten Geschäftsprozesses
- Machbarkeitsstudie (proof-of-concept) durch Nutzen des Werkzeugs w\u00e4hrend der Evaluierungsphase

Certified Tester Foundation Level

© trendig technology services GmbH

416

VI. Werkzeugunterstützung für das Testen » 2. Effektive Nutzung von Werkzeugen

Pilotprojekte für die Einführung von Werkzeugen im Unternehmen

Nach der Auswahl eines Werkzeugs startet die Einführungsphase im Rahmen eines Pilotprojektes mit folgenden Zielen

- Detailliertes Kennenlernen des Werkzeugs und seiner Stärken und Schwächen
- Evaluierung: In welchem Maße müssen bestehende Prozesse und Methoden angepasst und erweitert oder verändert werden
- Entscheidung über Standardisierung und Wartung des Werkzeuges
 - o Verwaltung, Speicherung der Daten und Testbestände
 - o Namenskonventionen, Programmierrichtlinien (Tests!), Bibliotheken, Module
- Einschätzung, ob sich die erwarteten Nutzenpotenziale einstellen und ob der erwartete Aufwand der Nutzung im Rahmen bleibt (ROI)
- Metriken verstehen und das Werkzeug konfigurieren: Welche Metriken das Werkzeug liefert, wie sie erfasst, aufgezeichnet, gesammelt und ausgewertet werden

Erfolgsfaktoren für Werkzeuge

Nach dem Pilotprojekt erfolgt die schrittweise Einführung im gesamten Unternehmen, nicht nur in einem Bereich

- Der Werkzeugeinsatz muss in den betreffenden Arbeitsabläufen / Prozessen festgeschrieben werden
- Benutzerrichtlinien für den Werkzeugeinsatz sind notwendig
- Schulungsmaßnahmen, Coaching und Support nicht nur bei der Einführung, sondern auch während des laufenden Einsatzes
- Erfahrungen aus dem Einsatz aller Benutzern messen und sammeln
- Die tatsächliche Nutzung und der Nutzen des Werkzeugs sind zu verfolgen, ggf. sind geeignete Steuerungsmaßnahmen zu ergreifen, um die Nutzung sicherzustellen
- Integration in den Softwareentwicklungslebenszyklus, technisch, organisatorisch und organisationsübergreifend

Certified Tester Foundation Level

© trendig technology services GmbH

418

VI. Werkzeugunterstützung für das Testen » Zusammenfassung

Zusammenfassung

- Es gibt unterschiedlichste Typen von Testwerkzeugen, die die verschiedenen Aufgabengebiete des Tests unterstützen
 - o Werkzeuge für das Management des Testens und für Testmittel
 - Werkzeuge für statisches Tests
 - o Werkzeuge für Testentwurf und -realisierung
 - o Werkzeuge für Testdurchführung und -protokollierung (z. B. Komparatoren)
 - o Werkzeuge zur Performancemessung und dynamischen Analyse
 - o Werkzeuge für spezielle Testbedürfnisse
 - Werkzeuge, die keine reinen Testwerkzeuge sind
- Der Einsatz von Testwerkzeugen soll auf Basis einer Bewertung der Unternehmensreife und Kosten-Nutzen-Analyse wohlüberlegt erfolgen
- Die Verwendung eines neuen Testwerkzeugs muss gezielt vorbereitet, durchgeführt und fortgeführt werden, um erfolgreich zu sein

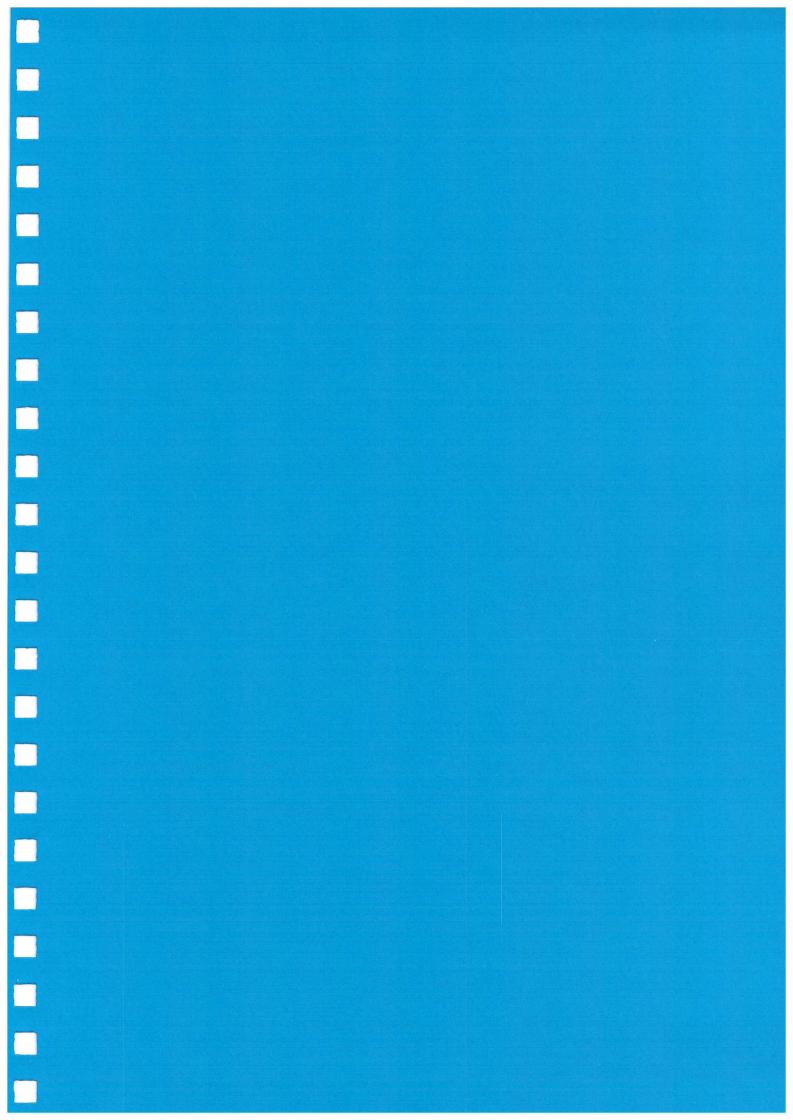
VI. Werkzeugunterstützung für das Testen » Schlüsselbegriffe

Schlüsselbegriffe

- Datengetriebener Ansatz
- Schlüsselwortgetriebener Ansatz
- Testautomatisierung
- Testausführungswerkzeug
- Testmanagementwerkzeug

Certified Tester Foundation Level

© trendig technology services GmbH



Danke, dass Du dabei warst!

Wir wünschen Dir eine erfolgreiche Prüfung zum

ISTQB® Certified Tester - Foundation Level

420

Familienname, Vorname:	30.2
Firmenadresse:	
Telefon:	
Fax:	
E-Mail-Adresse:	
Rechnungsanschrift:	
an of Man produced in the second of	gartes de la companya de la Maria de La m
o francos association for the second	
Schulungsunternehmen:	
Referent:	
Foundation Level CO	ORE Probeprüfung
SET B (ISTO	-
CTFL CORE Lehrplan \	/ersion 2018 (V.3.1)
ISTQB Gloss	sar V.3.3

ISTQB® Certified Tester Foundation Level

(Hinweis: Wenn nicht anders gekennzeichnet ist nur eine der vorgegebenen Antworten jeweils zutreffend.)

Einführung

Dies ist eine Probeprüfung. Sie hilft den Kandidaten bei ihrer Vorbereitung auf die Zertifizierungsprüfung. Enthalten sind Fragen, deren Format der regulären ISTQB®¹ / GTB Certified Tester Foundation Level Prüfung ähnelt.

Es ist strengstens verboten, diese Prüfungsfragen in einer echten Prüfung zu verwenden.

- Jede Einzelperson und jeder Schulungsanbieter kann diese Probeprüfung in einer Schulung verwenden, wenn ISTQB[®] als Quelle und Copyright-Inhaber der Probeprüfung anerkannt wird.
- 2) Jede Einzelperson oder Gruppe von Personen kann diese Probeprüfung als Grundlage für Artikel, Bücher oder andere abgeleitete Schriftstücke verwenden, wenn ISTQB® als Quelle und Copyright-Inhaber der Probeprüfung bestätigt wird.
- 3) Jedes vom ISTQB® anerkannte nationale Board kann diese Probeprüfung übersetzen und öffentlich zugänglich machen, wenn ISTQB® als Quelle und Copyright-Inhaber der Probeprüfung bestätigt wird.
- 4) Zu fast jeder Frage wird genau eine zutreffende Lösung erwartet. Bei den Ausnahmen wird explizit auf die Möglichkeit mehrerer Antworten hingewiesen.

Allgemeine Angaben zur Probeprüfung:

Anzahl der Fragen: 40

Dauer der Prüfung: 60 Minuten

Gesamtpunktzahl: 40 (ein Punkt pro Frage)

Punktzahl zum Bestehen der Prüfung: 26 (oder mehr)

Prozentsatz zum Bestehen der Prüfung: 65% (oder mehr)

2/41 CTFL CORE Syllabus 2018, V.3.1

¹ International Software Testing Qualifications Board

		um Thema ngen des Testens"	4.5.		-
117.76	dia n	- Super- and the state of the	nighted passing to	, 110 h	-
Fra	ige 1	Keywords	K1	Punkte 1.0	
	"Tes	che der folgenden Aussagen i tfall"?		n des Begriffes	
110		len Sie genau EINE korrekte O	* No. 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	erced Miller Comme	
a)	Syste	nenge des Wertebereichs innerh ems, für die aufgrund der Spezifi hartig behandelt werden.	alb einer Komponente ode ikation erwartet wird, dass	er eines alle Werte	
b)		ge von Vorbedingungen, Eingab Nachbedingungen, welche auf B en.			
c)	gebra	itsergebnis, welches während de aucht wird, um die Tests zu plan uwerten und darüber zu berichte	nen, zu entwerfen, auszufü	vird und dazu Ihren,	
d)	Inforn	mationsquelle zur Ermittlung des chlichen Ergebnis eines Systems	erwarteten Ergebnisses, s unter Test zu vergleiche	um es mit dem n.	
Frag	ge 2	FL-1.1.1	K1	Punkte 1.0	
1.75eL	Softw	he der folgenden Aussagen is vare? en Sie genau EINE korrekte O _l		s Testens von	
a)	Fehle	rwirkungen und Fehlerzustände	aufdecken		
b)	Validie	erung von Projektplänen	Militaria de La del Paris de La		
c)	Sicher	rstellen von vollständigen Tests			
d)	Vergle	eich der Istergebnisse mit den er	rwarteten Ergebnissen		

1645	ge 3	FL-1.				7/37				1	
			folgende es Autos?	n Beispiele	e ist e	eine	Fehlerw	irkun	g in	einem	1
	Wählen	Sie ge	nau EINE	korrekte Op	otion au	ıs!					
a)				ns hat verge en umzuben			len nach	einer	n		
b)			r Code, de aufgenomn	r beim Rück nen.	wärtsfal	hren (einen Ala	arm au	ıslöst, v	wurde	
c)				estellte Geso er verringer		gkeit r	nicht me	hr ein,	wenn	die	
d)	Die Syst	em-En	twurfsspez	ifikation gibt	die Ge	schw	indigkeit	falsch	an.		
Fra	ge 4	FL-1	.2.4				K2	3 T 2 7 T 1	Punkt	e 1.0	
Fra	Welche	der f	olgenden	Aussagen Fehlerzust			n Fehle		and al		
Fra	Welche Grundu	der f	olgenden e für einen		and in	einer	n Fehle		and al		
Fra	Welche Grundu Wählen Der Anfo	der frache	olgenden e für einen enau EINE ngsmanage ng zu Unre	Fehlerzust	and in o ption au er Domä us, dass	einer us! ine de s die	n Fehle n Fitnes	s-Trac	and al	s eind	
	Welche Grundu Wählen Der Anfovertraut Frequer Der Tes	der frache	olgenden e für einen enau EINE ngsmanage ng zu Unre chlägen pro	Fehlerzust korrekte O er war mit de cht davon a	and in our potion and er Domä us, dass esen words	einer us! ane de s die ollen. icht ir	n Fehle n Fitnes es Fitnes Benutze m zustan	strain r die H	and allocker?	s eind cht lag-	•
a)	Welche Grundu Wählen Der Anfovertraut Frequer Der Tes geschult	der frache Sie ge orderui und gi nz in Se ter des t und h	olgenden e für einen enau EINE ngsmanage ng zu Unre chlägen pro s Smartpho at daher ei	korrekte O er war mit de cht davon a Stunde abl	er Domä us, dass esen wo s war ni anten Fe	einer us! ane de s die ollen. icht ir ehler	n Fehle n Fitnes es Fitnes Benutze m zustar überseh	estrain r die H dsbas en.	and all cker? ings nice lerzscheierten	s eine cht lag- Tester	•

Frage 5	FL-1.3.1	K2	Punkte 1.0

Als Ergebnis der Risikoanalyse werden mehr Tests auf die Bereiche des Systems unter Test angewendet, in denen die ersten Tests mehr Fehler als in den anderen Bereichen aufgedeckt haben.

Welcher der folgenden Grundsätze des Testens wird angewendet?

Wählen Sie genau EINE korrekte Option aus!

a)	Vorsicht vor dem Pestizid-Paradoxon.	
b)	Das Testen ist kontextabhängig.	
c)	Trugschluss: Keine Fehler bedeutet brauchbares System.	
d)	Häufung von Fehlerzuständen.	

			5 11 40
Frage 6	FL-1.4.2	K2	Punkte 1.0

Gegeben seien die folgenden Listen von Testaktivitäten (A.-D.) und Testaufgaben (1.-4.):

- A. Testentwurf
- B. Testrealisierung
- C. Testdurchführung
- D. Testabschluss
- 1. Erfassung von Änderungsanforderungen für offene Fehlerberichte
- 2. Identifizierung von Testdaten zur Unterstützung der Testfälle
- 3. Priorisierung von Testabläufen und Vorbereitung von Testdaten
- 4. Analyse von Abweichungen, um deren Ursache zu ermitteln

Welches ist die korrekte Paarung von Testaktivitäten und Testaufgaben?

Wählen Sie genau EINE korrekte Option aus!

a)	A-2, B-3, C-4, D-1	
b)	A-2, B-1, C-3, D-4	
c)	A-3, B-2, C-4, D-1	
d)	A-3, B-2, C-1, D-4	

	ge 7	FL-1.4.4		The second second		K2	Punkte	1.0	
	Mehrw zwisch	e der folgen vert durch A nen Testbasis n Sie genau E	ufrechterha und Testart	ltung und efakten er	l Wartui zielt wird	ng dei			
a)		ngstests könn erungen vollstä				en dei	r ursprüngl	ichen	
b)		n festgestellt v erungen erreic		in neuer Te	estfall eine	höher	e Abdeckur	ng der	
c)		anager können regrad gefunde		welche Tes	ter die Fe	hler mi	it dem höch:	sten	
d)	1	ne, die möglich n, können durc					•	usst	
			PANTA.		100 100	nesis i			
Frag	ge 8	FL-1.5.2	A.3455.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		K2	Punkte	1.0	
Fraç	Welch eines Wähle	FL-1.5.2 e der folgende Testers als in n Sie genau E	der Denkwe	eise eines l	Entwickle us!	HER ir	n der Denkv		
	Welcheines Wähle	e der folgend Testers als in n Sie genau E	der Denkwe	eise eines le Option a	Entwickle us! nit steige	HER in	n der Denkv		
a)	Welcheines Wähle Die Lei	e der folgende Testers als in n Sie genau E	der Denkwe INE korrekte esters wächs nnen, was ar	eise eines le Option autumber eine eine eine eine eine eine eine ei	Entwickle us! nit steige	HER in	n der Denkv		

	zum Thema im Softwaree	ntwicklunç	jslebenszy	/klus"		- 3	4)
* 95	professa Mil	Lighten	Harris Co. S. C.	as (= 2) 48	181		
Frage 9	FL-2.1.1	range of grant		K2		Punkte	1.0

Betrachten Sie die folgenden Aussagen über die Beziehungen zwischen Softwareentwicklungsaktivitäten und Testaktivitäten im Softwareentwicklungslebenszyklus:

- 1. Für jede Entwicklungsaktivität sollte es eine zugehörige Testaktivität geben.
- 2. Reviewaktivitäten sollten starten, sobald die finale Version der Dokumente verfügbar ist.
- 3. Testentwurf und Implementierung der Tests sollten während der entsprechenden Entwicklungsaktivitäten starten.
- 4. Testaktivitäten sollten schon in frühen Phasen des Softwareentwicklungslebenszyklus beginnen.

Welche der folgenden Optionen zeigt KORREKT, welche dieser Aussagen wahr und welche falsch sind?

a)	Wahr – 1, 2; Falsch – 3, 4	
b)	Wahr – 2, 3; Falsch – 1, 4	
c)	Wahr – 1, 2, 4; Falsch – 3	
d)	Wahr – 1, 4; Falsch – 2, 3	

Frage 10	FL-2.2.1	K2	Punkte 1.0

Ein durchgeführter Test hat folgende Eigenschaften:

- Er basiert auf Schnittstellenspezifikationen.
- Der Schwerpunkt liegt auf dem Finden von Fehlerwirkungen in der Kommunikation.
- Die Testvorgehensweise wendet sowohl funktionale als auch strukturelle Testarten an.

Auf welcher der folgenden Teststufen wird dieser Test AM WAHRSCHEINLICHSTEN durchgeführt?

a)	Integrationstest.	
b)	Abnahmetest.	
c)	Systemtest.	
d)	Komponententest.	

Frage 11 FL-2.3.2	K1	Punkte 1.0
-------------------	----	------------

Welche der folgenden Aussagen über Testarten und Teststufen ist ZUTREFFEND?

a)	Funktionaler und nicht-funktionaler Test können auf den Teststufen System- und Abnahmetest durchgeführt werden, während der White-Box-Test auf Komponenten- und Integrationstests beschränkt ist.	
b)	Funktionaler Test kann auf jeder Teststufe durchgeführt werden, während der White-Box-Test auf Komponententest beschränkt ist.	
c)	Es ist möglich, funktionalen, nicht-funktionalen und White-Box-Test in jeder Teststufe durchzuführen.	
d)	Funktionaler und nicht-funktionaler Test können auf jeder Teststufe durchgeführt werden, während der White-Box-Test auf Komponenten- und Integrationstests beschränkt ist.	

Frage 12	FL-2.3.3	K2	Punkte 1.0

der folgenden Aussagen vergleicht die Fehlernachtests und Regressionstests AM BESTEN miteinander?

a)	Der Regressionstest stellt sicher, dass alle früher durchgeführten Tests immer noch korrekt laufen, während der Fehlernachtest sicherstellt, dass Korrekturen an einem Teil des Systems die anderen Teile nicht negativ beeinflussen.	
b)	Der Fehlernachtest prüft, dass ein vorher gefundener Fehlerzustand korrigiert wurde, während der Regressionstest sicherstellt, dass die Korrektur keine anderen Teile des Systems negativ beeinflusst hat.	
c)	Der Regressionstest stellt sicher, dass Korrekturen an einem Teil des Systems die anderen Teile nicht negativ beeinflussen, während der Fehlernachtest prüft, dass alle früher durchgeführten Tests immer noch die gleichen Ergebnisse produzieren.	
d)	Der Fehlernachtest bestätigt, dass die Änderungen am System erfolgreich durchgeführt wurden, während der Regressionstest Tests durchführt, die vorher fehlgeschlagen sind, um sicherzustellen, dass sie jetzt korrekt funktionieren.	

		177	
Frage 13	FL-2.4.2	K2	Punkte 1.0

Welche der folgenden Aussagen beschreibt eine Aufgabe der Auswirkungsanalyse im Wartungstest KORREKT?

a)	Die Auswirkungsanalyse unterstützt bei der Entscheidung, ob sich eine Fehlerkorrektur beim zu wartenden System lohnt.	
b)	Die Auswirkungsanalyse identifiziert, wie Daten in das gewartete System zu migrieren sind.	
c)	Die Auswirkungsanalyse unterstützt bei der Entscheidung, welche Hot Fixes den meisten Nutzen für den Benutzer haben.	
d)	Die Auswirkungsanalyse unterstützt die Ermittlung der Effektivität neuer Wartungstestfälle.	

		m Thema r Test"	**************************************	[8']		
Frag	ge 14	FL-3.1.2	K	2	Punkte 1	1.0
	KORR	e der folgenden Aussagen EKT wieder? n Sie genau EINE korrekte C		des statis	schen Te	sts
a)		ler Einführung von Reviews ste ezifikationen als auch die für E				
b)	und h	die Anwendung von statischen aben ein günstigeres Fehler im Lebenszyklus leichter finde	management, weil			
c)	abgen	jetzt statische Analyse nutzen ommen und die Kommunikatio erbessert.			_	at 🔠
d)	Progra	m wir statische Analysen einge mmierfehler, die wir allein dur efunden hätten.	범고 [17] [18] 가고 스크린 [17] [18] 그 모든 그렇게 2		ierweise	

rag	e 15	FL-3.2.1		K2		Punkte	1.0	
	einem fo	der folgenden ormalen Review	ist KORREKT?		on Ch	ecklisten	bei	
a)	Im Rahm	Sie genau EINE en der Planung den Checklisten.			ver die f	ür das Re	view	
b)	Im Rahn	nen der Befundko stellten Checkliste		llen die Review	er die f	ür das Re	view	
c)		nen der Reviewsit bereitgestellten C			f Basis	der für da	ıs	С
d)		nen des Reviewbo benötigten Check) erhalten die R	eviewe	r die für da	as	
Frag	ge 16	FL-3.2.2		K	siate in	Punkte	1.0	
Fra(Welche in einen	der folgenden C n formalen Revie	ew KORREKT v	ie Rollen und '				
	Welche in einen Wählen	der folgenden C n formalen Revie Sie genau EINE	ew KORREKT v	ie Rollen und ' vieder? n aus!	Verantv	vortlichk		
Fraç	Welche in einen Wählen	der folgenden C n formalen Revie	ew KORREKT v	ie Rollen und ' vieder? n aus!	Verantv	vortlichk		
	Welche in einen Wählen Manage	der folgenden C n formalen Revie Sie genau EINE	korrekte Optio	ie Rollen und V vieder? n aus! chführung von F	Verantv Reviews	vortlichk	eiten	
a)	Welche in einen Wählen Manage Reviewl	der folgenden C n formalen Revie Sie genau EINE ment – Entscheid	korrekte Optionet über die Durcher der Erfolgreichen Ab	ie Rollen und Vieder? n aus! chführung von F	Verantv Reviews	wortlichke	eiten	

Frage 17 FL-3.2.3 K2 Punkte 1.0	Frage 17	FL-3.2.3	K2	Punkte 1.0
---------------------------------	----------	----------	----	------------

Die Reviews in Ihrer Organisation haben die folgenden Eigenschaften:

- Es gibt die Rolle des Protokollanten
- Der Zweck ist es, potenzielle Fehlerzustände zu entdecken
- Die Reviewsitzung wird vom Autor geleitet
- Die Reviewer finden potenzielle Fehlerzustände durch individuelles Review
- Es wird ein Reviewbericht erstellt

Welche der folgenden Reviewarten wird hier AM WAHRSCHEINLICHSTEN verwendet?

a)	Informelles Review	
b)	Walkthrough	
c)	Technisches Review	
d)	Inspektion	

Frage 18	FL-3.2.4	K3	Punkte 1.0
Frage 10	FL-3.2.4		

Sie wurden gebeten, an einem checklistenbasierten Review des folgenden Auszuges aus einer Anforderungsspezifikation eines Bibliothekssystems teilzunehmen:

Bibliothekare können:

- 1. Neue Nutzer registrieren.
- 2. Bücher von Nutzern zurücknehmen.
- 3. Mahngebühren für Nutzer erheben.
- 4. Neue Bücher mit deren ISBN, Autor und Titel dem System hinzufügen.
- 5. Bücher aus dem System löschen.
- 6. Systemrückmeldungen innerhalb von 5 Sekunden erhalten.

Nutzer können:

- 7. Maximal drei Bücher gleichzeitig ausleihen.
- 8. Die Historie ihrer ausgeliehen/reservierten Bücher anschauen.
- 9. Mit einer Mahngebühr wegen Nichtrückgabe eines Buches innerhalb von 3 Wochen belegt werden.
- 10. Systemrückmeldungen innerhalb von 3 Sekunden erhalten.
- 11. Ein Buch kostenfrei für maximal 4 Wochen ausleihen.
- 12. Bücher reservieren (falls sie ausgeliehen sind).

Alle Benutzer (Bibliothekare und Nutzer):

- 13. Können Bücher nach ISBN, Autor oder Titel suchen.
- 14. Können den Systemkatalog durchstöbern.
- 15. Das System soll innerhalb von 3 Sekunden auf Benutzeranfragen reagieren.
- 16. Die Benutzungsschnittstelle soll einfach zu bedienen sein.

Ihnen wurde der Checklisteneintrag zugewiesen, der ein Review der Spezifikation auf Inkonsistenzen zwischen einzelnen Anforderungen vorsieht (beispielsweise Konflikte zwischen Anforderungen).

Welche folgenden Kombinationen weisen Inkonsistenzen zwischen Anforderungspaaren RICHTIG auf?

a)	6-10, 6-15, 7-12	
b)	6-15, 9-11	
c)	6-10, 6-15, 9-11	
d)	6-15, 7-12	

Frad	en zum	Thema	(1) "我想到我们的一个的。"第二节	
_	tverfahr		\$10年日前1900 - 1900 File 1	
	MANAGEMENT OF THE PARTY OF THE	Selection of the Supplement Parks.	er mage in a constitution	
Frag	e 19	Schlüsselbegriff	K1 Punkte 1.0	
	Testen?	der folgenden Aussagen beschreibt AM Sie genau EINE korrekte Option aus!	BESTEN exploratives	
a)	des Hinte	etvorgehensweise/ein Testansatz, bei der eine ergrunds des Testobjekts dazu genutzt wird, i fizieren, die durch Testfälle untersucht werde	mögliche Schwachstellen	
b)	ihrem W	stvorgehensweise/ein Testansatz bei dem d issen, der Erkundung des Testelements un ynamisch Tests entwerfen und durchführen.	lie Tester, basierend auf d dem Ergebnis früherer	
c)	insbesor	stvorgehensweise/ein Testansatz, bei dem di ndere Testanalyse und Testentwurf - als unte en geplant werden, oft in Verbindung mit chec	rbrechungsfreie	
d)		stvorgehensweise/ein Testansatz, das auf de Intuition des Testers basiert.	r Erfahrung, dem Wissen	

Frage 20	FL-4.1.1	K2	Punkte 1.0
----------	----------	----	------------

Welche der folgenden Zuordnungen von Beschreibungen zu verschiedenen Kategorien von Testverfahren trifft AM BESTEN zu?

- 1. Überdeckung wird auf Basis einer ausgewählten Struktur des Testobjektes gemessen.
- 2. Verarbeitung innerhalb des Testobjekts wird überprüft.
- 3. Tests basieren auf der Wahrscheinlichkeit von Fehlerzuständen und deren Verteilung.
- 4. Abweichungen von Anforderungen werden überprüft.
- 5. User-Stories werden als Testbasis herangezogen.

Verwendete Notation für die folgenden 4 Optionen:

Black – Black-Box-Testverfahren
White – White-Box-Testverfahren

Erfahrung – erfahrungsbasiertes Testverfahren

a)	Black – 4, 5; White – 1, 2; Erfahrung – 3	h.C.	P. Start S.	75	
b)	Black – 3; White – 1, 2; Erfahrung – 4, 5		L. 9		
c)	Black – 4; White – 1, 2; Erfahrung – 3, 5	1899	2-10		
d)	Black – 1, 3, 5; White – 2; Erfahrung – 4				

Frage 21	FL-4.2.1	К3	Punkte 1.0

Eine Fitness-App misst die Anzahl der täglich gelaufenen Schritte und gibt dazu Feedback, um den Anwender zu motivieren, fit zu bleiben.

Das Feedback zu den verschiedenen Schrittzahlen soll sein:

Bis zu 1000

- Couch Potato!

Über 1000, bis zu 2000

- Faulpelz!

Über 2000, bis zu 4000

- Die Richtung stimmt!

Über 4000, bis zu 6000

- Nicht schlecht!

Über 6000

- Super!

Welche der folgenden Gruppen von Testeingabewerten würde für die BESTE Überdeckung von Äquivalenzklassen sorgen?

a)	0,	1000,	2000,	3000,	4000	
b)	1000,	2001,	4000,	4001,	6000	
c)	123,	2345,	3456,	4567,	5678	
d)	666,	999,	2222,	5555,	6666	

Frage 22	FL-4.2.1	K3	Punkte 1.0
		COLOR SERVICE MANAGEMENT OF THE PARTY.	

Ein Gerät zur Messung des täglichen Strahlungseinfalls für Pflanzen ermittelt einen Einstrahlungswert für Sonnenschein. Dieser ergibt sich aus der Kombination der Anzahl der Stunden, in denen eine Pflanze der Sonne ausgesetzt ist (unter 3 Stunden, 3 bis 6 Stunden, über 6 Stunden) und der durchschnittlichen Intensität des Sonnenscheins (sehr niedrig, niedrig, mittel, hoch). Die folgenden Testfälle existieren bereits:

	Dauer (Stunden)	Intensität	Einstrahlung
T1	1,5	sehr niedrig	10
T2	7,0	mittel	60
T3	0,5	sehr niedrig	10

Wie viele Testfälle müssen mindestens noch erzeugt werden, um eine vollständige Überdeckung ALLER GÜLTIGEN Eingabe-Äquivalenzklassen zu gewährleisten?

a)	1	312			
b)	2	72		2.7%	
c)	3				
d)	4	9			

Frage 23 FL-4.2.2	K3	Punkte 1.0
-------------------	-----------	------------

Eine Smart-Home-App misst die durchschnittliche Temperatur im Haus während der vergangenen Woche und gibt den Bewohnern basierend auf diesem Wert Informationen zur Umweltfreundlichkeit ihres Verhaltens. Das Feedback für die verschiedenen Durchschnittstemperaturbereiche (gerundet auf die nächsten ganzen °C) soll lauten:

Bis zu 10°C Eiskalt!

11°C bis 15°C Ganz schön schattig!

16°C bis 19°C Cool!

20°C bis 22°C Zu warm!

Über 22°C Sauna!

Welches der folgenden Testsets liefert die höchste Überdeckung von Grenzwerten, wenn die Grenzwertanalyse ausschließlich unter Verwendung der Minimal- und Maximalwerte verwendet wird?

a)	0°С,	11°C,	20°C,	22°C,	23°C		
b)	9°C,	15°C,	19°C,	23°C,	100°C	A TIME	
c)	10°C,	16°C,	19°C,	22°C,	23°C		
d)	14°C,	15°C,	18°C,	19°C,	21°C	22°C	

Frage 24	FL-4.2.3	КЗ	Punkte 1.0

Ein System zur Berechnung der Strafe für Geschwindigkeitsübertretungen im Straßenverkehr wird mit folgender Entscheidungstabelle spezifiziert:

	Regeln	R1	R2	R3	R4
Bedingungen	Geschwindigkeit > 50	J	J	N	Ν
	Schul-Zone	J	N	J	N
Aktionen	250€ Geldstrafe	-	Х	-	-
	Führerscheinentzug	X	-	-	-

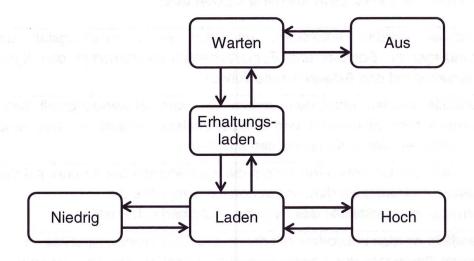
Für die beiden in der obigen Tabelle dargestellten Regeln R1 und R4 wurden bereits folgende zwei Testfälle generiert:

ID	Eingabe	Erwartetes Ergebnis
TF1	Geschwindigkeit = 65; Schulzone = Ja	Führerscheinentzug
TF2	Geschwindigkeit = 45; Schulzone = Nein	Keine Strafe

Die nächste Tabelle zeigt vier zusätzliche Testfälle TF3, TF4, TF5 und TF6:

ID	Eingabe	Erwartetes Ergebnis
TF3	Geschwindigkeit = 55; Schulzone = Ja	Führerscheinentzug
TF4	Geschwindigkeit = 44; Schulzone = Ja	Keine Strafe
TF5	Geschwindigkeit = 66; Schulzone = Ja	Führerscheinentzug
TF6	Geschwindigkeit = 77; Schulzone = Nein	250€ Geldstrafe

Siehe nächste Seite!


Welche zwei der zusätzlichen Testfälle würden eine 100% Überdeckung der gesamten Entscheidungstabelle erreichen (in Kombination mit den Testfällen TF1 und TF2)?

a)	TF3, TF4		
b)	TF4, TF5		
c)	TF4, TF6		
d)	TF5, TF6	gurb energy months and hi addition sin the	

Frage 25	FL-4.2.4	K3	Punkte 1.0

Gegeben sei folgendes Zustandsübergangsdiagramm für die Software eines Batterie-Ladegerätes:

Welche der folgenden Zustandsübergangs-Sequenzen ergibt die höchste Überdeckung der Zustandsübergänge?

a)	Aus \rightarrow Warten \rightarrow Aus \rightarrow Warten \rightarrow Erhaltungsladen \rightarrow Laden \rightarrow Hoch \rightarrow Laden \rightarrow Niedrig	
b)	Warten \rightarrow Erhaltungsladen \rightarrow Warten \rightarrow Aus \rightarrow Warten \rightarrow Erhaltungsladen \rightarrow Laden \rightarrow Niedrig \rightarrow Laden	
c)	Hoch → Laden → Niedrig → Laden → Erhaltungsladen → Warten → Erhaltungsladen	
d)	Warten \rightarrow Erhaltungsladen \rightarrow Laden \rightarrow Hoch \rightarrow Laden \rightarrow Erhaltungsladen \rightarrow Warten \rightarrow Aus \rightarrow Warten	

Frag	je 26	FL-4.2.5		K2	Punkte	1.0	
- 4 (aus Anw	der folgenden Aussagen endungsfällen entworfen Sie genau EINE korrekte (werden?	BESTEN	, wie Test	fälle	
a)		werden entworfen, ur ende, Sonder- und Fehle n mit den Akteuren auszuf	erbehandlungs-Ver	vendungs halten d			
b)	Kompone	werden entworfen, inder enten identifiziert und Inte nen dieser Komponenten a	egrationstests erst	endungsf ellt werd	all betroffe en, welche	enen e die	
c)	System a	Testfälle werden entworfen, indem die Interaktionen der Akteure mit dem System analysiert werden, um sicherzustellen, dass die Benutzungsschnittstelle des Systems leicht bedienbar ist.					
d)	Geschäft	werden entworfen, mit den sprozess des Anwendungs e Entscheidungsüberdecku	sfalls ausgeführt w	ıngspunk erden, ur	te im n eine		
Fra	ge 27	FL-4.3.1		K2	Punkte	1.0	
		der folgenden Beschreib	oungen der Anwe	isungsül	oerdeckun	ng ist	
a)	Die Anw	Sie genau EINE korrekte eisungsüberdeckung ist ei	in Maß für die Anz	zahl der	Quellcodez	zeilen	Г
	Wählen Die Anw (ohne Ko	Sie genau EINE korrekte eisungsüberdeckung ist ei ommentare), die im Test au	in Maß für die Anz usgeführt wurden.	7			
a) b)	Die Anw (ohne Ko	Sie genau EINE korrekte eisungsüberdeckung ist ei	in Maß für die Anz usgeführt wurden. ein Maß für den	prozentu	alen Antei	il der	
	Die Anw (ohne Ko Die Anw ausführb	Sie genau EINE korrekte eisungsüberdeckung ist ei ommentare), die im Test au reisungsüberdeckung ist e	in Maß für die Anzusgeführt wurden. ein Maß für den ellcode, die im Test	prozentu ausgefü entualen	alen Antei hrt wurden Anteil der	il der	

Frage 28	FL-4.3.2	K2	Punkte	1.0

Welche der folgenden Beschreibungen der Entscheidungsüberdeckung ist zutreffend?

a)	Die Entscheidungsüberdeckung ist ein Maß für den prozentualen Anteil möglicher Pfade durch den Quellcode, die im Test ausgeführt wurden.	
b)	Die Entscheidungsüberdeckung ist ein Maß für den prozentualen Anteil der Geschäftsabläufe durch die Komponente, die im Test ausgeführt wurden.	
c)	Die Entscheidungsüberdeckung ist ein Maß für die "IF-Anweisungen" im Quellcode, die im Test sowohl mit dem Ergebnis "WAHR" als auch mit "FALSCH" ausgeführt wurden.	
d)	Die Entscheidungsüberdeckung ist ein Maß für den Anteil der Entscheidungsergebnisse, die im Test ausgeführt wurden.	

Frage 29	FL-4.4.1	K2	Punkte 1.0	

Welche der folgenden Optionen beschreibt AM BESTEN das Konzept der intuitiven Testfallermittlung?

a)	Die intuitive Testfallermittlung erfordert, dass Sie sich vorstellen, der Benutzer des Testobjekts zu sein und dass Sie Fehler erraten, die der Benutzer bei der Interaktion damit machen könnte.	
b)	Die intuitive Testfallermittlung bezieht Ihre persönlichen Entwicklungs- erfahrungen und die Fehler mit ein, die Sie als Entwickler gemacht haben.	
c)	Die intuitive Testfallermittlung verwendet Ihre Kenntnisse und Erfahrungen mit Fehlerzuständen, die in der Vergangenheit gefunden wurden, sowie mit typischen Fehlhandlungen von Entwicklern.	
d)	Die intuitive Testfallermittlung erfordert, dass Sie die Entwicklungsaufgabe schnell selbst wiederholen, um die Art von Fehlern zu identifizieren, die Entwickler dabei möglicherweise machen könnten.	

	agen zum Thema estmanagement"			
Testmana	agement" 			
Frage 30	FL-5.1.1	K2	Punkte 1.0	
Frage 30 FL-5.1.1 Welche der folgenden Aussagen beschreibt am BE				
unabh	ne der folgenden Aussagen b nängigem Testen?	oeschreibt am BESTEN e	inen Vorteil von	

a)	Projektmanagement die Verantwortung für die Qualität des finalen Arbeitsergebnisses auf das Testteam zu übertragen. Somit ist jedem bewusst, dass die Qualität in der Gesamtverantwortung des Testteams liegt.	
b)	Wenn ein Testteam außerhalb der Organisation zur Verfügung gestellt werden kann, hat dies deutliche Vorteile, da dieses externe Team nicht so leicht von den Bedenken des Projektmanagements und der Notwendigkeit der Einhaltung strenger Lieferfristen beeinflusst wird.	
c)	Ein unabhängiges Testteam kann vollkommen separat von den Entwicklern arbeiten, muss sich nicht von sich ändernden Projektanforderungen ablenken lassen und kann die Kommunikation mit den Entwicklern auf das Verfassen von Fehlerberichten über das Fehlermanagementsystem beschränken.	
d)	Wenn Spezifikationen Mehrdeutigkeiten und/oder Inkonsistenzen enthalten, werden Annahmen zu deren Interpretation getroffen. Ein unabhängiger Tester kann hilfreich sein, um die vom Entwickler getroffenen Annahmen und vorgenommenen Interpretationen in Frage zu stellen.	

Erogo 21	FL-5.1.2	K1	Punkte 1.0
Frage 31	FL-3.1.2		

Welche der folgenden Aufgaben wird AM WAHRSCHEINLICHSTEN vom Testmanager ausgeführt?

a)	Erstellen von Testabschlussberichten auf der Grundlage der während des Tests gesammelten Informationen.	
b)	Tests prüfen, die von anderen entwickelt wurden.	
c)	Testdaten vorbereiten und beschaffen.	
d)	Anforderungen, Spezifikationen und Modelle auf Testbarkeit analysieren, prüfen und beurteilen.	

Frage 32 FL-5.2.3 K2 Punk	cte	1.0
---------------------------	-----	-----

Gegeben seien die folgenden Beispiele für Eingangs- und Endekriterien:

- 1. Das ursprüngliche Testbudget von 30.000 US-Dollar wurde ausgegeben.
- 2. 96% der geplanten Tests wurden ausgeführt.
- 3. Die Testumgebung für den Performanz-Test wurde entworfen, eingerichtet und verifiziert.
- 4. Derzeit gibt es keine kritischen Fehlerzustände und zwei Fehlerzustände mit hoher Priorität.
- 5. Die Designspezifikationen wurden einem Review unterzogen und nachgebessert.
- 6. Die Komponente für die Berechnung des Steuersatzes hat die Unit-Tests bestanden.

Welche der folgenden Kombinationen kategorisiert sie AM BESTEN als Eingangs- und Endekriterien?

a)	Eingangskriterien – 5, 6; Endekriterien – 1, 2, 3, 4	
b)	Eingangskriterien – 2, 3, 6; Endekriterien – 1, 4, 5	
c)	Eingangskriterien – 1, 3; Endekriterien – 2, 4, 5, 6	
d)	Eingangskriterien – 3, 5, 6; Endekriterien – 1, 2, 4	

		K2	Punkte 1.0
Frage 33	FL-5.2.4	К3	Fullikle 1.0

Gegeben sind die folgenden Prioritäten und Abhängigkeiten von Testfällen:

Testfall	Priorität	Technische Abhängigkeit von:	Logische Abhängigkeit von:
TF1	Hoch	TF4	A
TF2	Niedrig	royeta Amilio	les so san
TF3	Hoch	Link Link Trees	TF4
TF4	Mittel	and the same of th	and the terminal to
TF5	Niedrig		TF2
TF6	Mittel	TF5	

Welcher der folgenden Testausführungspläne berücksichtigt AM BESTEN die Prioritäten sowie technische und logische Abhängigkeiten?

a)	TF1 – TF3 – TF4 – TF6 – TF2 – TF5	
b)	TF4 – TF3 – TF1 – TF2 – TF5 – TF6	
c)	TF4 – TF1 – TF3 – TF5 – TF6 – TF2	
d)	TF4 – TF2 – TF5 – TF1 – TF3 – TF6	

Frag	je 34 FL-5.	2.6		K2	Punkte 1.0	
			gen über Testscha	ätzverfahrei	n ist korrekt?	
a)			n basiert die Schä ese Schätzung er	•		
b)			nren empfiehlt eind derliche Testbudge		den identifizierte	
c)			ren schätzen die fü n Testmanager den			
d)			ird ein Durchschnitt en ermittelt wurden			
Frag	e 35 FL-5.	5.1	Control margin a nucleon	K1	Punkte 1.0	
	(Höhe des Ris	ikos)?	agen definiert AN	I BESTEN (die Risikostufe	
a)			indem die Wahrsc aus resultierende f			
b)	des Systems m		indem die Wahrsch nit der Wahrscheinl verursacht.			
c)			urch eine Kombina es und der erwarte			
d)			aller potenziellen G r potenziellen Verlu		-	

Fraç	ge 36	FL-5.5.2	K2	Punkte	1.0
	Produkt	r der folgenden Aussagen risiko? Sie genau EINE korrekte O	y codec e sú tê cuma	Beispiel für	ein
a)		arteten IT-Sicherheitsmerkn erweise nicht unterstützt.	nale werden von der	Systemarchite	ktur
b)	1	wickler haben möglicherwe nen Fehler zu beheben.	ise nicht die Zeit, al	e vom Testte	eam
c)	Die Test vollständ	tfälle decken die spezifizierte dig ab.	n Anforderungen möglid	cherweise nich	nt
d)		gebung für den Performanzte as System zur Auslieferung a		cht einsatzber	eit,
Fra	ge 37	FL-5.5.3	K2	Punkte	1.0
Fra	Welche und Tes	FL-5.5.3 der folgenden Aussagen z stmanagement ist am wenig Sie genau EINE korrekte C	zum Zusammenhang v gsten sinnvoll?		
	Welche und Tes Wählen Die pote besonde	der folgenden Aussagen z stmanagement ist am wenig	zum Zusammenhang v gsten sinnvoll? Option aus! T-Sicherheitsmängeln v	von Produktri	siko
	Welche und Tes Wählen Die pote besonde Testakti Die Tes	der folgenden Aussagen zetmanagement ist am wenig Sie genau EINE korrekte Cenziellen Auswirkungen von liers hoch eingestuft, so dass livitäten priorisiert wurden.	zum Zusammenhang v gsten sinnvoll? Option aus! T-Sicherheitsmängeln v T-Sicherheitstests vor e	vurden als einigen andere	siko en
a)	Welche und Tes Wählen Die pote besonde Testakti Die Tes als erwa werden. Die Ben	der folgenden Aussagen zetmanagement ist am wenig Sie genau EINE korrekte Cenziellen Auswirkungen von liers hoch eingestuft, so dass livitäten priorisiert wurden.	zum Zusammenhang versten sinnvoll? Option aus! T-Sicherheitsmängeln versicherheitstests vor ein Dualität des Netzwerkmer Tests in diesem Bereicher Benutzeroberfläche der Benutzeroberfläche der	vurden als einigen andere oduls besser is ch durchgeführ	siko en st

Frage 38 FL-5.6.1	K3	Punkte 1.0
-------------------	----	------------

Sie führen Systemtests für ein Zugbuchungssystem durch. Basierend auf den durchgeführten Testfällen haben Sie festgestellt, dass das System gelegentlich meldet, dass keine Züge verfügbar sind, obwohl dies eigentlich der Fall sein sollte. Sie haben den Entwicklern eine Zusammenfassung des Fehlers und der Version des getesteten Systems zur Verfügung gestellt. Diese erkennen die Dringlichkeit des Fehlers und warten nun darauf, dass Sie weitere Details angeben.

Abgesehen von den bereits aufgeführten Informationen sind folgende weitere Informationen gegeben:

- 1. Grad der Auswirkung (Schwere) des Fehlers.
- 2. Identifikation des Testelements.
- 3. Details der Testumgebung.
- 4. Dringlichkeit/Priorität für die Behebung.
- 5. Istergebnisse.
- 6. Referenz auf die Testfallspezifikation.

Welche dieser Informationen sind AM SINNVOLLSTEN, um sie in den Fehlerbericht mit aufzunehmen?

a)	1, 2, 6	
b)	1, 4, 5, 6	
c)	2, 3, 4, 5	
d)	3, 5, 6	

Fragen zui "Testwerk		- 4 2	\$ T = 127 to 15
1,111,000,213	g te desagnes y de la companie de la		
Frage 39	FL-6.1.1	K2	Punkte 1.0

Gegeben seien folgende Testaktivitäten und Testwerkzeuge:

- 1. Performanzmessung und dynamische Analyse.
- 2. Testdurchführung und Protokollierung.
- 3. Management des Testens und Testmittel.
- 4. Testentwurf.
- A. Werkzeuge für Anforderungsüberdeckung.
- B. Dynamische Analysewerkzeuge.
- C. Werkzeuge zur Vorbereitung von Testdaten.
- D. Fehlermanagementwerkzeuge.

Welcher der folgenden Kombinationen passt am besten zu den Aktivitäten und Tools?

a)	1 – B, 2 – C, 3 – D, 4 – A	
b)	1 – B, 2 – A, 3 – C, 4 – D	
c)	1 – B, 2 – A, 3 – D, 4 – C	
d)	1 – A, 2 – B, 3 – D, 4 – C	

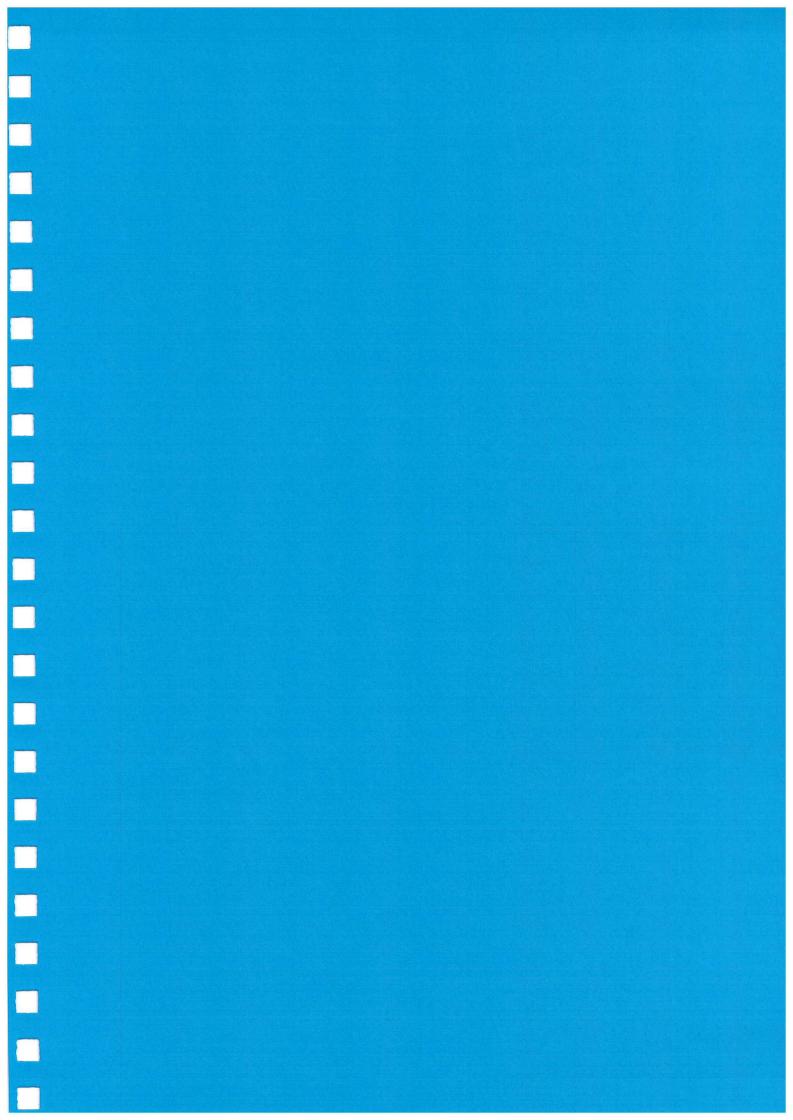
Frage 40	FL-6.2.2	K1	Punkte	1.0	
----------	----------	----	--------	-----	--

Welcher der folgenden Punkte wird AM WAHRSCHEINLICHSTEN als Grund für die Verwendung eines Pilotprojekts zur Einführung eines Werkzeugs in einem Unternehmen verwendet?

a)	Die Notwendigkeit zu bewerten, wie das Werkzeug zu bestehenden Prozessen und Vorgehensweisen passt und zu bestimmen, was geändert werden muss.	
b)	Die Notwendigkeit, die Fähigkeiten zur Testautomatisierung sowie die Trainings-, Mentoring- und Coaching-Bedürfnisse der Tester zu bewerten, die das Werkzeug nutzen werden.	
c)	Die Notwendigkeit zu bewerten, ob das Werkzeug die erforderliche Funktionalität bietet und bestehende Testwerkzeuge nicht dupliziert.	
d)	Die Notwendigkeit, den Werkzeughersteller zu bewerten in Bezug auf die Schulung und andere Unterstützung, die er anbietet.	

and a green report all the commence of a supplication of the commence of the c

Platz für Ihre Notizen:


Platz für Ihre Notizen:

Platz für Ihre Notizen:

Platz für Ihre Notizen:

ISTQB® Certified Tester Foundation Level

Übungen

Informationen zu den Übungen:

Die Übungen sind zum Teil als Einzelarbeiten mit Ergebnisdiskussion, als Gruppenarbeit mit Ergebnisdiskussion oder als gemeinsame Arbeiten gestaltet.

Nicht alle Übungen werden während des Seminars durchgeführt. Manche Übungen werden als Hausarbeiten aufgegeben oder alternativ durchgeführt – d.h. von zwei möglichen Übungsszenarien wird nur eines ausgewählt.

Zu manchen Übungsthemen wird im Rahmen einer gemeinsamen Diskussion das Übungsergebnis erarbeitet.

Zu allen Übungen gibt es Lösungsbeispiele oder Lösungsansätze in einem separaten Dokument bzw. in einem separaten Bereich dieses Dokumentes.

Version 0.6 (Dezember 2021)

Inhaltsverzeichnis:		Seite
1.	Übungen	1
2.	Lösungen	14
3.	Normen und Standards	28
4.	Quellenverzeichnis	29

Übungen

The second secon	I. Grundlagen des Softwaretestens 1. Warum ist Testen notwendig?		
Übung I.1: Wie vie	el Testaufwand ist notwendig?		
Aufgabe	• Welche Faktoren sind für die Bestimmung des Testaufwands entscheidend?		
Zeitrahmen	10 Min. gemeinsame Erarbeitung am Flipchart		

*		

Übungen

	n des Softwaretestens sten notwendig?
Übung I.2: Zusam	menfassung von Beispielen
Aufgabe	 Welche Beispiele für die folgenden Themen gibt es: Softwarefehler können verheerende Auswirkungen haben und sehr teuer sein Durch Fehlhandlungen können Fehlerzustände/Defekte in das Testobjekt kommen, die sich mit Fehlerwirkungen zeigen Norm ISO 9126 regelt den Begriff der Softwarequalität, funktionale und nicht-funktionalen Qualitätsmerkmale bestimmen die Gesamtqualität Konstruktive Software QS befasst sich mit Fehlervermeidung Analytische Software QS mit Fehlerfindung,-korrektur und Qualitätssicherung Für Tests sind vorab Endekriterien zu definieren, mit deren Erfüllung der Test abgeschlossen ist
Zeitrahmen	10 Min. gemeinsame Erarbeitung am Flipchart

Deine Lösung:			

Übung III.1: Revi	iew Durchführen
	Führe ein Walkthrough für die gegebene Spezifikation durch.
	Anforderungsspezifikation (Online-Shop):
	Bis einschließlich 500 Euro Warenwert gibt es keinen Rabatt. Ab Euro 500 bis 1.000,- gibt es 2,5 % Rabatt. Über € 1.000 bis 5.000 Euro gibt es 5,0 % Rabatt, darüber 8,5 %.
Aufgabe	Bis 11 kg Gewicht kostet der Postversand 6 Euro, der Expressversand 12 Euro. Bis einschl. 30 kg Gewicht liegen die Versandpreise bei 11 Euro (normal) und 18 Euro (Express). Über 30 kg liegen die Preise entsprechend bei 17 bzw. 25 Euro. Auch Selbstabholung ist möglich.
	 Über 1.200 Euro Warenwert erfolgt der normale Paketversand versandkostenfrei.
	Bei Zahlung per Nachnahme werden 3 Euro Gebühr zusätzlich berechnet (normal wird per Vorkasse gezahlt). Bei über 1.000 Euro Warenwert entfällt auch die Nachnahme-Gebühr.
Zeitrahmen	15 Min. Gruppenarbeit

Übungen

IV. Testverfahren

2. Black-Box-Testverfahren

Übung IV.1: Äquivalenzklassen

Aus der gegebenen Spezifikation (Online-Shop) sind:

Die Eingabewerte zu bestimmen

Äquivalenzklassen für die Eingabe-Wertebereiche des Warenwertes zu definieren

Gültige Äquivalenzklassen

Ungültige Äquivalenzklassen

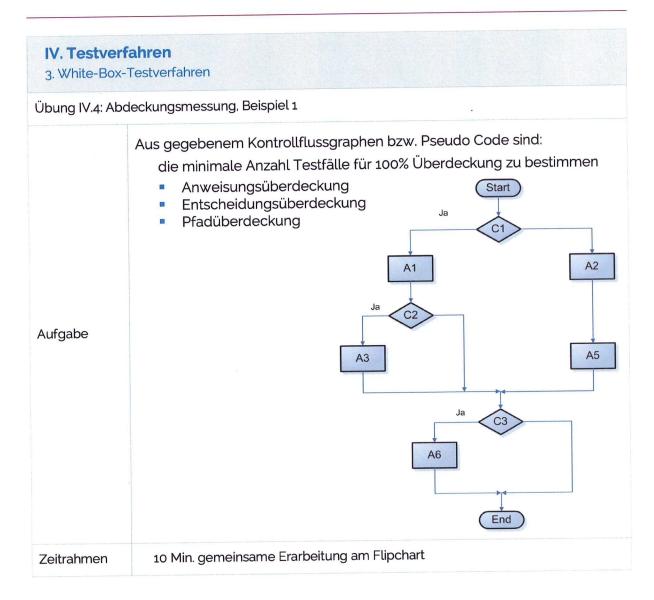
Origating	0 / 14
Aufgabe	 Anforderungsspezifikation (Online-Shop): Bis einschließlich 500 Euro Warenwert gibt es keinen Rabatt. Ab Euro 500 bis 1.000,- gibt es 2,5 % Rabatt. Über € 1.000 bis 5.000 Euro gibt es 5,0 % Rabatt, darüber 8,5 %. Bis 11 kg Gewicht kostet der Postversand 6 Euro, der Expressversand 12 Euro. Bis einschl. 30 kg Gewicht liegen die Versandpreise bei 11 Euro (normal) und 18 Euro (Express). Über 30 kg liegen die Preise entsprechend bei 17 bzw. 25 Euro. Auch Selbstabholung ist möglich. Über 1.200 Euro Warenwert erfolgt der normale Paketversand versandkostenfrei. Bei Zahlung per Nachnahme werden 3 Euro Gebühr zusätzlich berechnet (normal wird per Vorkasse gezahlt). Bei über 1.000 Euro Warenwert entfällt auch die Nachnahme-Gebühr.
Zeitrahmen	15 Min. Gruppenarbeit

© 2019 trendig technology services GmbH, Berlin (C	ermany)
Version 0.6, CTFL Syllabus 2018	

Übungen

IV. Testveri	
Übung IV.2: Ent	scheidungstabellentest
	Der Besuch im Zoo. Als Tierpfleger im Krefelder Zoo bist Du für die Betreuung der Nashornbabys <i>Navu</i> und <i>Thabo</i> zuständig.
Aufgabe	 Es gibt einige Regeln für die Besuche: Besucher mit ansteckenden Krankheiten dürfen gar nicht zu den Tieren Besucher außerhalb der Besuchszeiten dürfen nur für max. 15 Min. nach vorheriger Anmeldung zu den Tieren Besucher in großen Gruppen dürfen nur mit einem Pfleger zu den Tieren Die Regeln sind der Wichtigkeit nach angeordnet. In Abhängigkeit von den Ursachen werden die (ggf. kombinierten) Wirkungen ermittelt.
Zeitrahmen	20 Min. gemeinsame Erarbeitung am Flipchart

	De	ine	Lösu	ıng:
--	----	-----	------	------


Übungen

IV. Testveri	
Übung IV.3: Zus	tandsbasierter Test
Aufgabe	 Ein Zustandsübergangsdiagramm für die möglichen unterschiedlichen Familienstände aus Sicht eines deutschen Standesamtes wird erarbeitet Die Umformung des Diagrammes in einen Zustandsbaum wird gemeinsam durchgeführt
Zeitrahmen	10 Min. Gruppenarbeit

Anweisungsüberdeckung	
Entscheidungsüberdeckung	
Pfadüberdeckung	

Übungen

IV. Testverfahren 3. White-Box-Testverfahren Übung IV.5: Abdeckungsmessung, Beispiel 2 Erstelle für das in Pseudocode dargestellte Programm einen Kontrollflussgraphen. Bilde die minimal notwendige Anzahl von Testfällen, die 100% Überdeckungsgrad erzeugen für: Anweisungsüberdeckung Entscheidungsüberdeckung Pfadüberdeckung Start 1 2 IF V1 > 0 THEN Aufgabe 3 DO A1 IF V2 < 5 THEN 4 5 do A2 6 **ELSE** 7 do A3 8 **END-IF** 9 **END-IF** IF V3 = V1 THEN 10 do A4 11 **END-IF** 12 13 End Zeitrahmen 10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

Anweisungsüberdeckung	
Entscheidungsüberdeckung	
Pfadüberdeckung	

IV. Testverf 3. White-Box-	Fahren Testverfahren
Übung IV.6: Abo	deckungsmessung, Beispiel 3 _.
Aufgabe	Erstelle für das in Pseudocode dargestellte Programm einen Kontrollflussgraphen. Bilde die minimal notwendige Anzahl von Testfällen, die 100% Überdeckungsgrad erzeugen für: Anweisungsüberdeckung Entscheidungsüberdeckung Pfadüberdeckung Start if V1 > 0 then do A1 if V2 < 5 then do A2 until V3 = 0 endif Endif Endif
Zeitrahmen	10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

Anweisungsüberdeckung	
Entscheidungsüberdeckung	
Pfadüberdeckung	

Übungen

IV. Testverfahren

3. White-Box-Testverfahren

Übung V.7: Abdeckungsmessung, Beispiel 4

Erstelle für das in Pseudocode dargestellte Programm einen Kontrollflussgraphen.

Bilde die minimal notwendige Anzahl von Testfällen, die 100% Überdeckungsgrad erzeugen für:

- Anweisungsüberdeckung
- Entscheidungsüberdeckung
- Pfadüberdeckung

Aufgabe	1 2 3 4 5 6 7 8	Sortier-Programm (array DATEI, int EOF) boolean Sort-Ende int i, Hilf Sort-Ende = false WHILE (Sort-Ende = false AND EOF > 1) do Sort-Ende = true FOR (i=1; i<=(EOF-1); i=i+1) do IF DATEI[i] > DATEI[i+1] then
	9	Sort-Ende=false
	10	Hilf = DATEI[i]
	11	DATEI[i+1] = DATEI[i]
	12	DATEI[i] = Hilf
	13	END-IF
	14	END-FOR
	15	END-WHILE
	16	return DATEI

Deine Lösung:

Zeitrahmen

Anweisungsüberdeckung	
Entscheidungsüberdeckung	
Pfadüberdeckung	

10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

Übungen

IV. Testverfahren 3. White-Box-Testverfahren Übung 27 aus TrainingQuestionsGerman-Vo2_003a Welches ist die minimale Anzahl der benötigten Testfälle, um 100% Entscheidungsüberdeckung zu erreichen. Neue Übung mit Schleife Zeitrahmen 10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

- 1 Start
- 2 Input Number_of_Coins
- 3 Total = 0
- 4 While Number_of_Coins > 0
- 5 Input Value_of_Coins
- 6 Total = Total + Value_of_Coin
- Number_of_Coins = Number_of_Coins + 1
- 8 endloop
- 9 Print "Ihre Münzen haben den Wert: & Total"
- 10 End

Anweisungsüberdeckung	
Entscheidungsüberdeckung	
Pfadüberdeckung	

V. Testma 6. Fehlerma	nagement nagement
Übung V.1: Fe	hlermanagement .
Aufgabe	Du möchtest am Geldautomaten mit Deiner EC-Karte von Deinem Girokonto Geld abheben. Der Geldautomat hat Deine PIN-Eingabe als richtig quittiert und Dich nach dem gewünschten Betrag gefragt. Du hast den Betrag ausgewählt. Nach einer längeren Pause geht der Geldautomat außer Betrieb und Du hast Deine EC-Karte zurückerhalten, aber es erfolgte keine Auszahlung. Bei der Umsatzabfrage Deines Kontos stellst Du fest, dass der Betrag trotzdem Deinem Konto belastet wurde. Schreibe einen Fehlerbericht über den gesamten Fehlerverlauf.
Zeitrahmen	10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

Lösungen

INFORMATIONEN ZU DEN LÖSUNGEN/LÖSUNGSANSÄTZE:

Die hier angeführten Lösungsansätze stellen meist nur eine der möglichen Lösungen dar. In vielen Fällen sind andere Lösungen auch denkbar und sinnvoll.

Alle gefundenen Lösungsansätze sind stark von der jeweiligen Erfahrung des Bearbeiters geprägt.

Zu Diskussions-Übungen werden keine Lösungen präsentiert; es werden hier jedoch einige typische Argumente/Gesprächspunkte angeführt, die in den Diskussionen mit den Schulungsteilnehmern immer wieder auftraten.

Es gibt auch Übungen ohne niedergeschriebene Lösung.

	en des Softwaretestens esten notwendig?
Übung I.1: Wie vi	el Testaufwand ist notwendig?
Aufgabe	• Welche Faktoren sind für die Bestimmung des Testaufwands entscheidend?
Zeitrahmen	10 Min. gemeinsame Erarbeitung am Flipchart

Deine Lösung:		

Lösungen

I. Grundlagen des Softwaretestens 1. Warum ist Testen notwendig? Übung I.2: Zusammenfassung von Beispielen Welche Beispiele für die folgenden Themen gibt es: • Softwarefehler können verheerende Auswirkungen haben und sehr teuer sein Durch Fehlhandlungen können Fehlerzustände/Defekte in das Testobjekt kommen, die sich mit Fehlerwirkungen zeigen Norm ISO 9126 regelt den Begriff der **Softwarequalität**, funktionale und nicht-funktionalen Qualitätsmerkmale bestimmen die Aufgabe Gesamtqualität Konstruktive Software QS befasst sich mit Fehlervermeidung Analytische Software QS mit Fehlerfindung,-korrektur und Qualitätssicherung Für Tests sind vorab **Endekriterien** zu definieren, mit deren Erfüllung der Test abgeschlossen ist Zeitrahmen 10 Min. gemeinsame Erarbeitung am Flipchart

Deine Lösur	ng:

Lösungen

III. Testver	fahren Testverfahren
Übung III.1: Rev	riew durchführen
	Führe ein Walkthrough für die gegebene Spezifikation durch.
	Anforderungsspezifikation (Online-Shop):
	• Bis einschließlich 500 Euro Warenwert gibt es keinen Rabatt. Ab Euro 500 bis 1.000,- gibt es 2,5 % Rabatt. Über € 1.000 bis 5.000 Euro gibt es 5,0 % Rabatt, darüber 8,5 %.
Aufgabe	 Bis 11 kg Gewicht kostet der Postversand 6 Euro, der Expressversand 12 Euro. Bis einschl. 30 kg Gewicht liegen die Versandpreise bei 11 Euro (normal) und 18 Euro (Express). Über 30 kg liegen die Preise entsprechend bei 17 bzw. 25 Euro. Auch Selbstabholung ist möglich.
	 Über 1.200 Euro Warenwert erfolgt der normale Paketversand versandkostenfrei.
	Bei Zahlung per Nachnahme werden 3 Euro Gebühr zusätzlich berechnet (normal wird per Vorkasse gezahlt). Bei über 1.000 Euro Warenwert entfällt auch die Nachnahme-Gebühr.
Zeitrahmen	15 Min. Gruppenarbeit

Lösung:

Neben allgemeine Bemerkungen können u.a. folgende spezifische Themen diskutiert, bzw. als Befund angemerkt werden:

Zum ersten Abschnitt:

- ist Null Euro ein gültiger Warenwert, was ist mit negativen Werten (mehrdeutig, fehlende Info)
- "Bis 500 Euro" ist das einschließlich oder nicht (mehrdeutig)
- mal wird "bis" verwendet, mal "bis einschließlich" gibt's da Unterschiede?
 (mehrdeutig, gleiche Sachen erfordern gleiche Bezeichner)
- unterschiedliche W\u00e4hrungsbezeichnungen: EUR, Euro, € (gleiche Sachen erfordern gleiche Bezeichner)
- ist "Postversand" und "normaler Paketversand" dasselbe? (mehrdeutig, gleiche Sachen erfordern gleiche Bezeichner)
 - was ist das kleinste Inkrement (ein Euro? ein Cent?). Das ist aus der Schreibweise nicht ableitbar: 500 1000,- 1000,00 (fehlende Info)

Lösungen

Zum zweiten Abschnitt:

- was ist das kleinste Gewichtsinkrement 1 Gramm, 100 Gramm? (fehlende Info)
- mal wird "bis" verwendet, mal "bis einschließlich" gibt's da Unterschiede? (mehrdeutig, gleiche Sachen erfordern gleiche Bezeichner)
- wie hoch sind Versandkosten bei Selbstabholung? (mehrdeutig, fehlende Info) Zum dritten Abschnitt:
- hier kann schon eine kleine Entscheidungstabelle vorgestellt werden

Lösungen

IV. Testverfahren

2. Black-Box-Testverfahren

Übung IV.1: Äquivalenzklassen

Aus der gegebenen Spezifikation (Online-Shop) sind:

Die Eingabewerte zu bestimmen

Äquivalenzklassen für die Eingabe-Wertebereiche des Warenwertes zu definieren Gültige Äquivalenzklassen

Ungültige Äquivalenzklassen

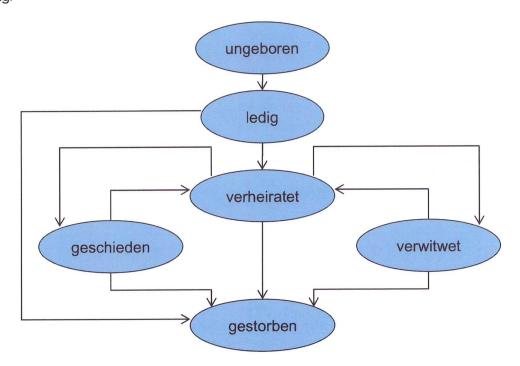
Lösung:

ÄK	Warenwert	Versand	Rabatt-%
+	0 < x ≤ 500	Versand	1.
+	500 < X ≤ 1.000	Versand	2,5 %
+	1.000 < X ≤ 1.200	Versand	5%
+	1.200 < X ≤ 5.000	./.	5%
+	5.000 < x ≤ ∞	J.	8,5 %
_	x ≤ 0		
_	x nicht numerisch		

Was fehlt?

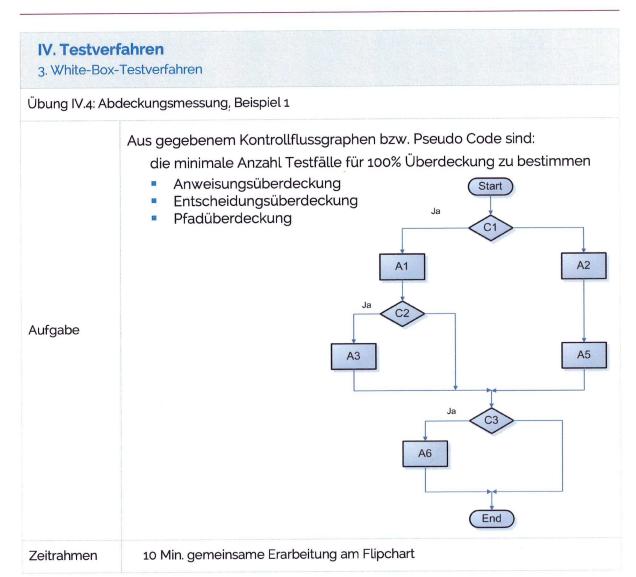
Die "Spezifikation" wird untersucht auf mangelhafte Angaben wie z.B. fehlende Untergrenzen, ungenaue Grenzangaben, Größe der Beträge für Warenwert (double?), Nachkommastellen, Rundung, größter Warenwert. Darüber hinaus wird durch die Einzelarbeit deutlich, welche Annahmen intuitiv getroffen werden, die dort gar nicht spezifiziert sind. Kritischer Umgang mit Spezifikationen und wie die ÄK dabei wesentlich unterstützen.

Lösungen


IV. Testver	-fahren -Testverfahren
Übung IV.2: En	tscheidungstabellentest
	Der Besuch im Zoo.
	Als Tierpfleger im Krefelder Zoo bist Du für die Betreuung der Nashornbabys <i>Navu</i> und <i>Thabo</i> zuständig.
	Es gibt einige Regeln für die Besuche:
Aufgabe	 Besucher mit ansteckenden Krankheiten dürfen gar nicht zu den Tieren
	 Besucher außerhalb der Besuchszeiten dürfen nur für max. 15 Min. nach vorheriger Anmeldung zu den Tieren
	 Besucher in großen Gruppen dürfen nur mit einem Pfleger zu den Tieren
	Die Regeln sind der Wichtigkeit nach angeordnet. In Abhängigkeit von den Ursachen werden die (ggf. kombinierten) Wirkungen ermittelt.
Zeitrahmen	20 Min. gemeinsame Erarbeitung am Flipchart

U	ansteckende Krankheit	J	N	N	N	N
U	außerhalb Besuchszeit + Anm.	-	J	N	J	N
U	große Gruppe	-	N	Ü	J	N
W	kein Besuch	J	N	N	N	N
W	Besuchszeit max. 5 Min.	N	J	N	J	N
W	mit Pfleger	N	N	J	J	N
W	Normalbesuch	N	N	N	N	J

Lösungen



IV. Testve 2. Black-Box	rfahren -Testverfahren
Übung IV.3: Zu	ustandsbasierter Test
	10 Min. Gruppendiskussion zur gemeinsamen Erstellung (Flip-Chart) des Zustandsdiagramms über die Zustände, die ein Mensch aus Sicht eines Standesbeamten im Laufe seines Lebens einnehmen kann (ledig, verheiratet, geschieden, verwitwet).
Aufgabe	Aufgabe: Ermitteln sie für das dargestellte Zustandsübergangsdiagramm die Testfälle: direkt durch Umwandlung in einen Zustandsbaum
Zeitrahmen	10 Min. Gruppenarbeit

Lösungen

Anweisungsüberdeckung	2
Entscheidungsüberdeckung	3
Pfadüberdeckung	6

Lösungen

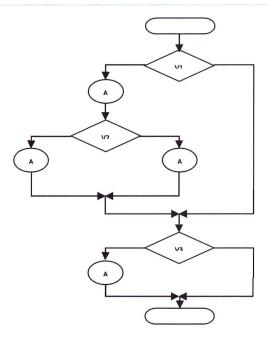
IV. Testverfahren

3. White-Box-Testverfahren

Übung IV.5: Abdeckungsmessung, Beispiel 2

Erstelle für das in Pseudocode dargestellte Programm einen Kontrollflussgraphen.

Bilde die minimal notwendige Anzahl von Testfällen, die 100% Überdeckungsgrad erzeugen für:


Aufgabe

- Anweisungsüberdeckung
- Entscheidungsüberdeckung
- Pfadüberdeckung

Zeitrahmen

10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

```
1
        Start
2
        IF V1 > 0 THEN
          DO A1
3
          IF V2 < 5 THEN
4
             do A2
5
6
          ELSE
7
             do A3
8
          END-IF
        END-IF
9
        IF V3 = V1 THEN
10
          do A4
11
        END-IF
12
13
        End
```


Anweisungsüberdeckung	2
Entscheidungsüberdeckung	3
Pfadüberdeckung	6

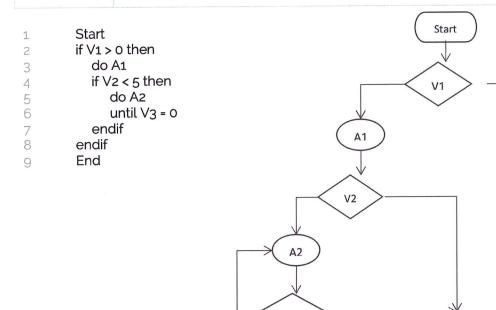
Lösungen

IV. Testverfahren

3. White-Box-Testverfahren

Übung IV.6: Abdeckungsmessung, Beispiel 3

Erstelle für das in Pseudocode dargestellte Programm einen Kontrollflussgraphen.


Aufgabe

Bilden Sie die minimal notwendige Anzahl von Testfällen, die 100% Überdeckungsgrad erzeugen für:

- Anweisungsüberdeckung
- Entscheidungsüberdeckung
- Pfadüberdeckung

Zeitrahmen

10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

Losurig.	
Anweisungsüberdeckung	1
Entscheidungsüberdeckung	3
Pfadüberdeckung	>= 4

Lösungen

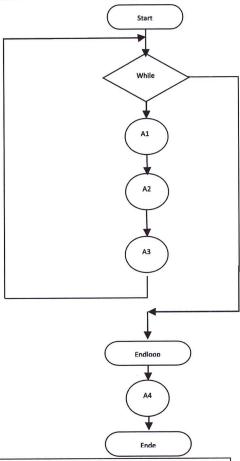


IV. Testverfahren

3. White-Box-Testverfahren

Übung IV.7: Ab	deckungsmessung, Beispiel 4
Aufgabe	Erstelle für das in Pseudocode dargestellte Programm einen Kontrollflussgraphen.
	Bilde die minimal notwendige Anzahl von Testfällen, die 100% Überdeckungsgrad erzeugen für:
	AnweisungsüberdeckungEntscheidungsüberdeckungPfadüberdeckung
Zeitrahmen	10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

```
Sortier-Programm (array DATEI, int EOF)
1
     boolean Sort-Ende
2
    int i, Hilf
3
     Sort-Ende = false
4
     WHILE (Sort-Ende = false AND EOF > 1) do
5
6
       Sort-Ende = true
       FOR (i=1; i<=(EOF-1); i=i+1) do
7
8
          IF DATEI[i] > DATEI[i+1] then
             Sort-Ende=false
9
             Hilf = DATEI[i]
10
             DATEI[i+1] = DATEI[i]
11
             DATEI[i] = Hilf
12
          END-IF
13
       END-FOR
14
15
     END-WHILE
     return DATEI
16
```



Anweisungsüberdeckung	1
Entscheidungsüberdeckung	1
Pfadüberdeckung	>= 1

Lösungen

IV. Testverfahren 3. White-Box-Testverfahren Übung 27 aus TrainingQuestionsGerman-Vo2_003a Welches ist die minimale Anzahl der benötigten Testfälle, um 100% Entscheidungsüberdeckung zu erreichen. Neue Übung mit Schleife Zeitrahmen 10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion

- 1 Start
- 2 Input Number_of_Coins
- 3 Total = 0
- While Number_of_Coins > 0
- 5 Input Value_of_Coins
- 6 Total = Total + Value_of_Coin
- 7 Number_of_Coins = Number_of_Coins + 1
- 8 endloop
- 9 Print "Ihre Münzen haben der Wert: & Total"
- 10 End

Anweisungsüberdeckung	1
Entscheidungsüberdeckung	1
Pfadüberdeckung	>= 1

V. Testmanagement 6. Fehlermanagement				
Übung V.1: Fehl	lermanagement			
Aufgabe	Du möchtest am Geldautomaten mit Deiner EC-Karte von Deinem Girokonto Geld abheben. Der Geldautomat hat Deine PIN-Eingabe als richtig quittiert und Dich nach dem gewünschten Betrag gefragt. Du hast den Betrag ausgewählt. Nach einer längeren Pause geht der Geldautomat außer Betrieb und Du hast Deine EC-Karte zurückerhalten, aber es erfolgte keine Auszahlung. Bei der Umsatzabfrage Deines Kontos stellst Du fest, dass der Betrag trotzdem Deinem Konto belastet wurde. Schreibe einen Fehlerbericht über den gesamten Fehlerverlauf.			
Zeitrahmen	10 Min. Einzelarbeit, 15 Min. Ergebnisdiskussion			

Lösung:				

Normen und Standards

- ISO 9000:2015
 Qualitätsmanagement Begriffe
- ISO 9000-3:2018 Quality management and quality assurance standards -- Part 3: Leitfaden für die Anwendung von ISO 9001 auf die Entwicklung, Lieferung und Wartung von Software Qualitätsmanagement- und Qualitätssicherungsnormen
- ISO 20246:2017 (vorheriger Standard: IEEE 1028)
 Software and systems engineering -- Work product reviews
- ISO 24765-2017 (vorheriger Standard: IEEE 610.12)
 Systems and software engineering--Vocabulary
- ISO 25010:2011 (vorheriger Standard ISO 9126)
 Systems and software engineering -- Systems and software Quality Requirements and Evaluation (SQuaRE) -- System and software quality models
- ISO 25051-2014
 Software engineering -- Systems and software Quality Requirements and Evaluation (SQuaRE) -- Requirements for quality of Ready to Use Software Product (RUSP) and instructions for testing
- ISO 29119:2013 (vorheriger Standard: IEEE 829)
- ISO 29119-1:2013 Software and systems engineering -- Software testing -- Part 1: Concepts and definitions
- ISO 29119-2:2013 Software and systems engineering -- Software testing -- Part 2: Test processes
- ISO 29119-3:2013 Software and systems engineering -- Software testing -- Part 3: Test documentation
- ISO 29119-4:2015 Software and systems engineering -- Software testing -- Part 4: Test techniques
- ISO 29119-5:2016 Software and systems engineering -- Software testing -- Part 5:
 Keyword-Driven Testing
- ISO 29148-2018
 Systems and software engineering Life cycle processes Requirements engineering
- ISO 30130:2016 Software engineering -- Capabilities of software testing tools
- IEEE 730-1989
 Standard for Configuration Management in Systems and Software Engineering
- IEEE 828-2012
 Standard for Software Configuration Management Plans
- IEEE 982.1-2005
 Standard Standard Dictionary of Measures of the Software Aspects of Dependability
- IEEE 1012-2016
 Standard for System, Software, and Hardware Verification and Validation
- IEEE 1044-2009 Standard Classification for Software Anomalies
- IEEE 1061-1998
 Standard for a Software Quality Metrics Methodology

- Testen in der Finanzwelt Bochynek, N.; Díaz, J.
- Basiswissen modellbasierter Test, Aus- und Weiterbildung zum ISTQB® Foundation Level – Certified Model-Based Tester, 2. Auflage
 Winter, M.; Roßner, Th.; Brandes, Ch.; Götz, H. – dpunkt.verlag
- Basiswissen Softwaretest (3. Auflage)
 Spillner, A.; Linz, T. dpunkt.verlag
- Basiswissen Testautomatisierung; Konzepte, Methoden und Techniken (2. Auflage)
 Bucsics, Th.; Baumgartner, M.; Seidl, R.; Gwihs, St. dpunkt.verlag
- Der Integrationstest Von Entwurf und Architektur zur Komponenten- und Systemintegration
 Winter, M.; Ekssir-Monfared, M.; Sneed, H. M.; Seidl, R.; Borner, L. – Carl Hanser Verlag
- Der Systemtest Von den Anforderungen zum Qualitätsnachweis, 3. Auflage
 Sneed, H. M.; Baumgartner, M.; Seidl, R. Carl Hanser Verlag
- Explore It! Wie Softwareentwickler und Tester mit explorativem Testen Risiken reduzieren und Fehler aufdecken Hendrickson, E. – dpunkt.verlag
- Lean Testing für C++-Programmierer angemessen statt aufwendig testen
 Spillner, A.; Breymann, U. dpunkt.verlag, Heidelberg
- Lehrbuch der Software-Technik
 Balzert, H. Spektrum Akademischer Verlag
- Methoden und Verfahren des QM für Software Deutsche Gesellschaft; DGQ für Qualität e.V.
- Methodisches Testen von Programmen
 Myers, G.J. Oldenbourg
- Reviews in der System- und Softwareentwicklung: Grundlagen, Praxis, kontinuierliche Verbesserung, 1. Auflage
 Rössler, P.; Schlich, M.; Kneuper, R. – dpunkt.verlag, Heidelberg
- Software automatisch testen
 Dustin, E. und Rashka, J. und Paul, J.; Springer Verlag
- Software-Metriken in der Praxis
 Ebert, Ch.; Dumke, R. Springer Verlag
- Software-Prüfung
 Frühauf, K.; Ludewig, J.; Sandmayr, H. vdf
- Software Qualität
 Liggesmeyer, P. Spektrum-Verlag, Heidelberg, Berlin
- Software QM Aufgaben, Möglichkeiten, für Qualität e.V.
 Deutsche Gesellschaft; Lösungen; DGQ

- Software-Qualitätsmanagement in der Praxis
 Wallmüller, E. Hanser
- Software Qualitätssicherung in der Praxis
 Wallmüller. E. Hanser
- Testen in Scrum-Projekten Leitfaden für Softwarequalität in der agilen Welt.
 Aus- und Weiterbildung zum ISTQB® Certified Agile Tester –
 Foundation Extension, 2. Version
 Linz, T. dpunkt.verlag, Heidelberg
- Agile Testing
 Crispin, L.; Gregory, J. Pearson Education Boston
- Agile Testing Foundations
 Black, R. BCS Learniing & Development Ltd. Swindon UK
- A Practitioner's Guide to Software Test Design
 Copeland, L. Artech House Publishers
- Client-Server Software Testing Mosley, D.J. – Prentice Hall PTR
- Complete Guide to Software Testing (2e)
 Hetzel, W. QED Information Sciences
- Effective Methods for Software Testing Perry, W.E. – Wiley
- Experiences of Test Automation
 Graham, D.; Fewster, M. Pearson Education
- Foundations of Software Testing: ISTQB Certification (4e)
 Black, R.; van Veenendaal, E.; Graham, D. Cengage Learning
- How Perspective-Based Reading can Improve Requirement Inspections
 Shull, F.; Rus, I.; Basili, V. IEEE Computer, Volume 33. Issue 7. pp 73-79
- Integrated Test Design and Automation Buwalda, H. et al. – Adison Wesley
- Introducing Software Testing
 Tamres, L. Adison Wesley
- Lessons Learned in Software Testing
 Kaner, C.; Bach, J.; Pettichord, B. Wiley
- Managing the Testing Process
 Black, R. Microsoft Press
- More Agile Testing
 Gregory, J.; Crispin, L. Pearson Education
- Model-Based Testing Essentials:
 Guide to the ISTQB Certified Model-Based Tester: Foundation Level
 Kramer, A.; Legeard, B. John Wiley & Sons

- Peer Reviews in Software
 Wiegers, K. Pearson Education
- Perfect Software and Other Illusions about Testing
 Weinberg, G. Dorset House
- Software Inspection
 Gilb, T.; Graham, D. Adison Wesley
- Software-Qualität
 Liggesmeyer, P. Spektrum-Verlag
- Software Test Automation
 Fewster, M.; Graham, D. Addison-Wesley
- Software Testing and Continuous Quality Improvement Lewis, W.E. – Auerbach
- Software Testing, A Craftsman's Approach
 Jorgensen, P. CRC Press
- Software Testing in the real world
 Kit, E. Addison-Wesley
- Software Testing Techniques (2e)
 Beizer, R. Van Nostrand Reinhold, Boston MA
- Software-Test/Verifikation und Validation
 Thaller, G.E. Heise
- Systematic Software Testing
 Craig, R.D., Jaskiel, St. Artech House Publishers
- Testing Computer Software
 Kaner, C.; Falk, J.; Nguyen, H. Wiley
- The Art of Software Testing
 Myers, G. John Wiley & Sons
- The Domain Testing Workbook
 Kaner, C.; Padmanabhan, S.; Hoffman, D. Context-Driven Press
- The Effectiveness of Software Development Technical Reviews:
 A Behaviorally Motivated Program of Research
 Sauer, C. IEEE Transactions on Software Engineering, Volume 26, Issue 1, pp 1-14
- The Testing Practitioner (Chapters 8 10)
 van Veenendaal, E. UTN Publishers
- Waltzing with Bears
 De Marco, T. und Lister, T. Dorset House Publishing
- ISO 9001 Thaller, G.E. – Heise

- Web
- www.istqb.org
 International Software Testing Qualification Board
- www.brightest.org
 International certification body
- www.asqf.de
 Arbeitskreis Software Qualität und Fortbildung
- www.austriantestingboard.at Austrian Testing Board
- www.german-testing-board.info German Testing Board
- www.trendig.com trendig technology services GmbH
- http://www.istqb.org/downloads.html Glossary of Terms (Englisch)
- https://www.german-testing-board.info/lehrplaene/istqbr-certified-tester-schema/kurz-vorgestellt/
 Download-Links zur deutschen und englischen Version des Glossars, Download-Links zur deutschen und englischen Version der Lehrpläne Certified Tester